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Abstract. An automatic Singular Spectrum Analysis based method-
ology is proposed to decompose and reconstruct time-series. We suggest
a clustering based procedure to identify the main dynamics of the input
signal, by computing a subset of orthogonal basis using a power spectrum
criterion. The subset of basis are represented by the Discrete Fourier
Transform to infer basis vectors encoding similar data structures. Thus, it
is possible to highlight hidden components into the signal. Our approach
is tested over some synthetic and real-world datasets, showing that our
algorithm is a good tool to decompose time-series.

1 Introduction

In many real-world problems related to signal processing it is necessary to iden-
tify hidden structures (components) from the given input, in order to improve the
performance of denoising, feature selection/extraction, and classification stages.
In this sense, projective techniques appear as a tool to generate an alternative
representation of the data, where such structures could be easily identified and
interpreted. Principal Component Analysis (PCA) and Singular Value Decom-
position (SVD) are the most common multivariate data projective techniques,
which are widely used as multivariate statistical analysis for feature extraction.
Those methods analyze a covariance function over the data to find the alternative
data representation. Projective techniques usually comprise three main steps:
projection of the data, selection of relevant components, and the reconstruction.

However, traditional projective techniques can not be directly applied to
one dimensional signal, which is the case of time-series [1]. Recently, Singular
Spectrum Analysis - SSA has been developed as a projective technique that can
be applied to time-series [1, 2, 3]. SSA decomposes the original signal into a sum
of small numbers of interpretable components, such as, slowly varying trends,
oscillatory components, and noise. Commonly, SSA is applied as a denoising
stage, without interpreting different components inside the signal, which could
be used to build an automatic time-series decomposition approach.

Here, we proposed an automatic SSA based methodology to decompose and
reconstruct time-series. Therefore, a subset of orthogonal basis computed from
the input are selected using a power spectrum criterion [4]. Moreover, we present
a clustering based procedure to highlight the main dynamics of the time-series.
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Thus, the subset of basis are represented by the Discrete Fourier Transform
(DFT), to identify basis encoding similar data structures. Our aim is to recon-
struct each component of the input signal by gathering orthogonal basis that
share similar power spectrum properties. The original signal is reconstructed
by a linear combination of the estimated components. Our approach is tested
over some synthetic and real-world datasets. The remainder of this paper is
organized as follow. Section 2 describes the main ideas behind SSA. Section 3
presents the proposed methodology to decompose and to reconstruct time-series
based on SSA. Section 4 shows the experimental set-up and results. Finally, in
sections 5 and 6 we discuss and conclude about the attained results.

2 Singular Spectrum Analysis - SSA

Traditional projective techniques, such as SVD/PCA, can not be directly ap-
plied to one dimensional time-series, being necessary the embedding of the one-
dimensional signal into a high-dimensional space of time delayed coordinates [1].
Let y = {yt : t = 1, . . . , T} be a real-valued time-series with y ∈ R

T , which is
mapped into the multidimensional set H = {y⊤

l : l = 1, . . . , L}, H ∈ R
K×L,

termed Hankel matrix, comprising L-lagged vectors, and with yl ∈ ℜK . In this
regard, H can be calculated as

H =















y1 y2 · · · yL−1 yL
y2 y3 . . . yL yL+1

...
...

. . .
...

...
yK−1 yK · · · yL−3+K yL−2+K

yK yK+1 · · · yL−2+K yL−1+K















, (1)

where K = T − L + 1 is the employed window size to embed the original
time-series. Now, the Hankel-matrix H in (1) can be considered as a multi-
variate representation of y, which is used by SSA to perform a SVD analysis.
Thus, an alternative representation of H can be written as H = UΣV ⊤, being
U ∈ R

K×K and V ∈ R
L×L the left and right singular vectors of H , respec-

tively, and Σ ∈ R
K×L is a rectangular matrix containing the H singular values

on its diagonal. A reconstructed version Ĥ of the original Hankel-matrix can
be obtained by Ĥ = (Û⊤)†Z, being Z ∈ R

m×L the projection of H by the
matrix Û ∈ R

K×m, which is conformed by the m most relevant basis vectors
of U (e.g. analyzing the singular values contained in Σ). Finally, to estimate
the reconstructed version ŷ of y, a diagonal averaging is computed over Ĥ, as
ŷ = ξ(Ĥ), with ξ(·) : RK×L 7→ R

T [1]. Thus, ŷ highlights the unfolded main
dynamics of y according to the selected basis Û .

3 Automatic Signal Decomposition based on SSA

The aim of SSA is to achieve a decomposition of the original time-series as y =
∑C

j=1 yj+ηηη, being yj ∈ R
T an interpretable component (dynamic) of y, C is the
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number of considered components, and ηηη ∈ R
T is a noise component perturbing

the signal. Hence, in order to attain a suitable representation of the original time-
series, it is necessary to fix two main free parameters: the embedding dimension
K and the number of basis vectorsm. It is important to note that SSA considers
y as a finite rank series [2], therefore, looking for a suitable window size value,
K is incremented according to the set θθθ = {2, . . . , T − 2}, until that

rank(Hθr+1) < rank(Hθr), (2)

where rank(·) is the rank function, r = 1, . . . , T − 3; Hθr ∈ R
θr×Lr , and Lr =

T − θr + 1. When (2) is accomplished, the SSA window size is fixed as K = θr.
SSA is able to find out different basis vectors containing the main dynamics

of y, however, such dynamics can be properly described by mixing basis with
similar properties. Here, we proposed a clustering based approach to infer the
main components of y from SSA. Namely, given the SVD of H , the singular
values of H are stored in λλλ = {λa : a = 1, . . . , rank(H)}, λλλ ∈ R

rank(H),
with λ1 > λ2 > · · · > λrank(H) [4]. To fix m, we look for the first λm value

such that λm/
∑rank(H)

a=1 λa < τλ. Then, from the subset of singular vectors
{λ1 > λ2 > · · · > λm}, their corresponding left singular vectors are stored in
the matrix Û . Consequently, the main components of the original time-series
are represented by the selected basis. Note that in this approach we assume
that the power of each time-series component yj is higher than the power of
the noise component ηηη (see [4] for details). Due to each yj can be represented
by one or a mixture of basis vectors, it is necessary to properly identify how
many components C are hidden into the signal. Therefore, we proposed to
characterize each column vector ûi ∈ R

K in Û , with i = 1, . . . ,m; by a function
ϑ(·) : RK 7→ ℜp. Our goal is to cluster basis with a similar behavior according
to ϑ(·). For such purpose, we employs the Discrete Fourier Transform - DFT as
ûi descriptor, to obtain a feature representation matrix X ∈ R

p×m, being p the
number of considered frequencies in DFT. In this approach the DFT is employed
to reveal the main power spectrum features of each yj , however, other kind of
representations could be employed. Now, to infer the number of components C
that are hidden into y, a singular value analysis is performed over X. Then,
the columns of X are clustered into C groups by a distance based method (e.g.
Euclidean distance). From the obtained labels, the Û (j) ∈ R

K×nj matrices are
conformed, being nj the number of elements (basis) in the j-th group. Besides,

for each Û (j), a projection Z(j) ∈ R
nj×L is computed as in traditional SSA,

which encodes the data structure properties of yj . Finally, the reconstructed
time-series ŷ is estimated as in (3)

ŷ =
∑C

j=1
ŷj =

∑C

j=1
ξ
(

Û (j)Z(j)
)

. (3)

4 Experiments

In order to test the capability of the proposed approach to automatically iden-
tify different dynamics over time-series, and to properly reconstruct the input
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signal, even against noise conditions, two synthetic and one real-world dataset
are tested. For all the provided experiments, τλ is fixed as 0.025, and the Eu-
clidean distance is used together with a cutoff based clustering algorithm to
identify the components of the signal. The first synthetic dataset is called
the Three-Sin, which is composed by three different sinusoidal functions as
y(t) = sin(2πft) + 1

2sin(4πft) +
1
3sin(6πft), where f = 60Hz. Thus, 300

samples are generated uniformly from 0 to 1
3f seconds. The second dataset

is named Sin-Sinc, which is created as y(t) = 2sinc(t) + 1
4sin(2πft). Again,

300 samples are generated uniformly from 0 to 0.2 seconds. For both synthetic
datasets, we test perturbing the input time-series with additive white Gaussian
noise against different signal to noise ratio, SNR[dB]={5, 10, 15}, to verify the
algorithm robustness. The average relative error - AE is computed as in (4)

AE(ŷ) = 100
1

10

∑10

b=1

∥

∥

∥
ŷ
(b) − y

∥

∥

∥

2

‖y‖2
[%], (4)

where ŷ(b) is the reconstructed signal according to (3) at the b-th simulation.
Table 1 describes the AE results and the number of employed basis m for each
synthetic dataset. All the provided results are presented with the obtained stan-
dard deviation for 10 simulations. Furthermore, in Fig. 1(a) and 1(c) the esti-
mated dynamics (SNR=5[dB]) are presented for the Three-Sin and the Sin-Sinc
datasets, respectively. Alike, in Fig. 1(b) and 1(d) the reconstructed time-series
are shown. Finally, the European Climate Assessment-ECA real-world dataset
is tested [5]. This database is a weather daily summary of Berlin, Germany
between 2001 to 2004. Nine variables are measured: could cover, mean rel-
ative humidity, mean barometric pressure, snow depth, precipitation amount,
sunshine, amount of rain, minimum air temperature, maximum air temperature
and mean air temperature. For concrete testing, the mean air daily temperature
is studied as input signal. In Fig. 1(e) and 1(f) the obtained components and
the reconstruction of the ECA mean air temperature are presented.

Table 1: Synthetic data reconstruction results against different noise levels.

Data SNR = 2[dB] SNR = 5[dB] SNR = 10[dB]
AE[%] m AE[%] m AE[%] m

Three-Sin 14.9 ± 3.6 6.9 ± 0.3 8.5 ± 1.1 7 ± 0 4.4 ± 0.7 7 ± 0.0
Sin-Sinc 13.8 ± 2.3 6.8 ± 0.4 9.1 ± 1.5 6.6 ± 0.5 4.6 ± 1.2 7.1 ± 0.6

5 Discussion

According to the attained results shown in Table 1, it is possible to notice that
our approach exhibits suitable AE reconstruction performances with low stan-
dard deviation, even against low SNR conditions. Hence, our approach seems
to be stable to reconstruct the input time-series, and it is useful as a denoising
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(a) Three-Sin decomposition-SNR=5[dB].

Dashed lines: original components. Con-

tinuous lines: estimated components.
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(b) Three-Sin reconstruction-SNR=5[dB]

(c) Sin-Sinc decomposition-SNR=5[dB].

Dashed lines: original components. Con-

tinuous lines: estimated components.

(d) Sin-Sinc reconstruction-SNR=5[dB]

(e) ECA decomposition m = 15 (f) ECA reconstruction m = 15

Fig. 1: Some visualization results

tool. Besides, it is possible to notice how our proposed methodology is able to
identify the main data structure, fixing the number of required basis m stably,
and clustering them to estimate each hidden component. Additionally, as can
be seen from Fig. 1(a) and 1(c) the main components of each synthetic dataset
are recovered perturbing the input signal with SNR=5[dB]. From the Three-Sin
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dataset it can be seen how even when each component presents a similar dis-
tribution, our approach is able to separate them. The above performance could
be explained by the fact that the proposed clustering scheme takes into account
the frequency properties of each basis, using the DFT as feature representation
criterion. Moreover, the above statement is verified in Fig. 1(b), which presents
the reconstruction of the input signal based on the computed components. Now,
regarding to the real-world dataset ECA, from Fig. 1(e) it can be noted how the
input signal is divided in 5 different components. The component with highest
power reveals the cycle structure of the signal, while the remain ones could be
related with high frequency changes of the time-series. Finally, based on the
selected components, the mean daily temperature is reconstructed as shown in
Fig. 1(f), which can be viewed as a free of noise version of the input.

6 Conclusions

An automatic SSA based methodology was proposed to decompose and recon-
struct time-series. In this sense, we suggested a clustering based procedure to
decompose the main dynamics of the input signal, using a DFT representation
to characterize the properties of the SSA orthogonal basis. Moreover, a singular
value analysis is employed to conserve the basis related to the main components
of the signal and to discard noisy ones. In this approach we assume that the
power of each component is enough different in comparison with the others, and
higher that the power of the noise. Besides, a rank based method to select the
window size of the Hankel matrix in SSA is presented. We tested our approach
in two synthetic and one real-world datasets. Attained results showed that our
approach is able to identify basis encoding similar data structures, which are
employed to infer hidden components of the signal, discarding noise elements.
As future work we are interested in decompose time-series in stationary and non-
stationary parts using the proposed approach, to support regression and pattern
recognition tasks (e.g. biosignal analysis). Furthermore, it would be interesting
to incorporate different kind of basis representation, besides the DFT, to deal
with more complex hidden components into the signal.
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