
Efficient VLSI Architecture for Spike Sorting

Based on Generalized Hebbian Algorithm

Wen-Jyi Hwang and Hao Chen

Department of Computer Science and Information Engineering,
National Taiwan Normal University, Taipei, 117, Taiwan.

Abstract.

A novel hardware architecture for fast spike sorting is presented in this
paper. The architecture is able to perform feature extraction based on the
Generalized Hebbian Algorithm (GHA). The employment of GHA allows
efficient computation of principal components for subsequent clustering
and classification operations. The hardware implementations of GHA fea-
tures high throughput and low area costs. The proposed architecture is
implemented by Field Programmable Gate Array (FPGA). It is embed-
ded in a System-On-Programmable-Chip(SOPC) platform for performance
measurement. Experimental results show that the proposed architecture
is an efficient spike sorting design for attaining low hardware resource uti-
lization and high speed computation.

1 Introduction

Spike sorting [1] is often desired for the design of brain machine interface (BMI).
It receives spike trains from extracellular recording systems. Each spike train ob-
tained from the system is a mixture of the trains from neurons near the recording
electrodes. The goal of spike sorting is to segregate the spike trains of individual
neurons from this mixture. Spike sorting is a difficult task due to the presence
background noise and the interferences among neurons in a local area. A typical
spike sorting algorithm involves computationally demanding operations such as
feature extraction. One way to carry out these complex tasks is to deliver spike
trains to external computers. Because the delivery of raw spike trains requires
high bandwidth, wireless transmission may be difficult. Many existing spike
sorting systems are therefore wired, restraining patients and test subjects from
free movement.

Hardware spike sorting is an effective alternative for BMI applications. It
allows the spike sorting to be carried out at the front-end so that data bandwidth
can be reduced for wireless communication. A number of hardware architectures
[2, 3, 4] have been proposed to expedite the spike sorting. A common drawback
of these approaches is that they are not based on efficient pipeline operations.
The architectures therefore may not be suitable for applications requiring online
training of large number of channels.

The objective of this paper is to present an effective VLSI architecture for
spike sorting. The architecture is able to perform online training for feature
extraction in hardware. The feature extraction is based on principal compo-
nent analysis (PCA), which is carried out by the generalized Hebbian algorithm

71

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

(GHA) [5]. A novel pipeline is proposed to implement the architecture. The
number of stages in the pipeline is the same as the number of the principal com-
ponents to be computed for PCA. Each stage is responsible for the computation
of a principal component. In addition, the computation results of the precedent
stages can be used for the computation of subsequent stages to accelerate the
training process.

To physically evaluate the proposed architecture, a spike sorting system on
a System-On-Programmable-Chip (SOPC) platform is implemented, where the
proposed spike sorting architecture is used as a hardware accelerator. The soft-
core processor in the SOPC platform does not participate the spike sorting com-
putation. It is used for control and data delivery among different components in
the SOPC. The computation time of spike sorting based on the SOPC is mea-
sured and compared with existing works. Experimental results reveal that the
proposed architecture is able to perform feature extraction in real time with low
hardware resource consumption.

2 Preliminaries

Let x(n) = [x1(n), . . . , xm(n)]T , and y(n) = [y1(n), . . . , yp(n)]
T , n = 1, ..., t, be

the n-th input and output vectors to the GHA, respectively. In addition, m, p
and t are the vector dimension, the number of principal components (PCs), and
the number of input and output vectors for the GHA, respectively. The output
vector y(n) is related to the input vector x(n) by

yj(n) =

m∑

i=1

wji(n)xi(n) (1)

where the wji(n) stands for the weight from the i-th synapse to the j-th neuron
at iteration n.

Let wj(n) = [wj1(n), . . . , wjm(n)]T , j = 1, . . . , p, be the j-th synaptic weight
vector. Each synaptic weight vector wj(n) is adapted by the Hebbian learning
rule:

wji(n+ 1) = wji(n) + ηyj(n)[xi(n)−
j∑

k=1

wki(n)yk(n)], (2)

where η denotes the learning rate. After a large number of iterative computation
and adaptation, wj(n) will asymptotically approach to the eigenvector associ-
ated with the j-th eigenvalue λj of the covariance matrix of input vectors, where
λ1 > λ2 > · · · > λp. A more detailed discussion of GHA can be found in [5].

When GHA is used for spike sorting, the x(n) is then the n-th spike in the
spike train. Therefore, the vector dimension m is the number of samples in a
spike. Let wj = [wj1, . . . , wjm]T , j = 1, . . . , p, be the synaptic weight vectors of
the GHA after the training process has completed. Based on wj , j = 1, ..., p,
the GHA feature vector extracted from training vector x(n) (denoted by fn) is

72

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Fig. 1: The architecture for the implementation of eqs. (4) and (6).

computed by fn = [fn,1, ..., fn,p]
T , where

fn,j =
m∑

i=1

wjixi(n) (3)

be the j-th element of fn. The classification of the spike x(n) can then be based
on the feature vector fn.

3 The Proposed Architecture

The goal of the proposed design is to implement eqs.(1) and (2) for GHA training
in hardware. The hardware circuit for eq.(1) is termed the principal component
computation (PCC) unit. It contains m multipliers and one adder. The circuit
for eq.(2) is termed the synaptic weight vector updating (SWU) unit. Although
the direct implementation of eq. (2) is possible, it will consume large hardware
resources [6]. One way to reduce the resource consumption is by observing that
eq. (2) can be rewritten as

wji(n+ 1) = wji(n) + ηyj(n)zji(n), (4)

where

zji(n) = xi(n)−
j∑

k=1

wki(n)yk(n), j = 1, . . . , p. (5)

and zj(n) = [zj1(n), . . . , zjm(n)]T . The zji(n) can be obtained from z(j−1)i(n)
by

zji(n) = z(j−1)i(n)− wji(n)yj(n), j = 2, . . . , p (6)

73

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Fig. 2: The architecture of the proposed pipeline for GHA training.

When j = 1, from eqs (5) and (6), it follows that

z0i(n) = xi(n) (7)

Therefore, the hardware implementation of eqs. (4) and (6) is equivalent to that
of eq.(2). Figure 1 shows the hardware architecture for the implementation of
eqs. (4) and (6).

Figure 2 shows the architecture of p-stage pipeline for GHA training, which
produces p principal components for feature extraction. As shown in the figure,
each stage contains a PCC unit, a SWU unit and a memory unit. Spikes are
delivered to the pipeline one at a time. The PCC unit of stage j, j = 1, ..., p,
(denoted by PCCj) receives the spike x(n − j + 1) for the computation of
yj(n−j+1) in time interval n. In addition, the SWU unit at stage j, j = 1, ..., p,
(denoted by SWUj) produces the synaptic weight vector wj(n − j + 1) in the
same time interval. The computation ofwj(n−j+1) requires the zj−1(n−j+1),
yj(n− j + 1) and wj(n− j) as inputs. In addition to wj(n− j + 1), the SWU
unit also produces zj(n− j+1), which will then be used for the computation of
wj+1(n−j+1). The memory unit at stage j (denoted byMEMj) stores synaptic
weight vector wj(n − j). After the training process is completed, the synaptic
weight vectors stored in the memory units are then used for the computation of
feature vectors using eq. (3).

The proposed GHA circuit is used as a custom user logic in a SOPC platform
consisting of softcore NIOS CPU, DMA controller and on-chip RAM,. All the
spikes are stored in the on-chip RAM and then transported to the proposed
GHA circuit for feature extraction. The DMA-based training data delivery is
performed so that the memory access overhead can be minimized. The softcore
NIOS CPU runs on a simple software for circuit activation and data delivery. It
does not involve GHA computations.

74

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Table 1: The CSR of the spike sorting system based on the proposed GHA
circuit.

c 2 3 4
SNR=10 dB 99.6 % 95.8 % 92.7 %
SNR=20 dB 99.6 % 96.4 % 94.1 %

Table 2: The hardware costs of the proposed GHA circuit and entire SOPC.

Logic Elements Embedded Multipliers Memory Bits
Proposed GHA 9144/149760 432/720 63488/6635520
Arch. (6.10 %) (60.00 %) (0.96 %)
Entire 19734/149760 436/720 744854/6635520
SOPC (13.18 %) (60.56 %) (11.23 %)

4 Experimental Results

The design platform for the experiments is Altera Quartus II with SOPC Builder
and NIOS II IDE. The target FPGA device is Altera Cyclone IV EP4CGX150.
In order to evaluate the performance of the proposed architecture for spike sort-
ing, the simulator developed in [7] is adopted to generate extracellular recordings.
The simulation gives access to ground truth about spiking activity in the record-
ing and thereby facilitates a quantitative assessment of architecture performance.
All the spikes are recorded with sampling rate 13500 samples/sec. The length
of each spike is 2.67 ms. Therefore, each spike has 36 samples (i.e.m = 36). The
number of PCs is p = 2 for the circuit design.

Table 1 shows the classification success rate (CSR) of the spike sorting system
for various number of target neurons c and SNR levels. The CSR for spike sorting
is defined as the number of spikes which are correctly classified by the total
number of spikes. The feature vectors produced by the proposed GHA circuit
are clustered by the fuzzy c-means (FCM) algorithm for the CSR measurement.
It can be observed from Table 1 that the proposed circuit is able to achieve
CCRs above 92 % for c = 4 with SNR=10 dB.

The hardware costs of the proposed architecture and entire SOPC are re-
vealed in Table 2. There are three different area costs considered in the ex-
periments: logic elements, embedded multipliers, and memory bits. It can be
observed from the table that only small percentages of logic elements and mem-
ory bits available in the target FPGA are consumed by the circuit. In addition,
the employment of SOPC does not significantly increase the hardware resource
consumption.

In Table 3, we compare the computation time of the proposed GHA circuit
with those of other hardware implementations [2, 3, 4] for feature extraction.
Note that the implementation in [4] is based on ASIC. Its performances are
normalized by [3] for the FPGA-based comparisons. The computation time of
[4] in the table are the normalized ones reported in [3]. It can be concluded from

75

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Table 3: Comparisons of the proposed GHA circuit with other FPGA-based
feature extraction implementations.

Proposed GHA GHA PCA
GHA Arch. Arch. Arch.
Arch. in [2] in [3] in [4]

Clock Rate 50 MHz 70 MHz
Comput. Time 2.91 ms 5.03 ms 5.6 ms 41.8 msa

Target Device FPGA FPGA FPGA ASIC
Cyclone IV Virtex 6 Spartan 6 CMOS
EP4CGX150 XC6VSX315T XC6SLX150L 0.35 μm

a Computation time equivalent to FPGA.

Table 3 that the proposed architecture has lower computation time than that of
the other hardware implementations [2, 3, 4]. In fact, because the computation
time of the proposed architecture is only 2.91 ms, the circuit is able to perform
the feature extraction for 12381 channels per minute.

5 Concluding Remarks

The proposed architecture has been implemented by FPGA for physical perfor-
mance measurement. The architecture is used as an hardware accelerator to the
NIOS CPU in a SOPC platform. Experimental results reveal that the proposed
spike sorting architecture has advantages of high CSR and high computation
speed. For SNR=10, its CSR is above 92 % for four target neurons. Its GHA
circuit has higher computation speed as compared with existing hardware GHA
implementations. These results show that the proposed system implemented by
FPGA is an effective realtime device for spike sorting at the front.

References

[1] M.S. Lewicki, A review of methods for spike sorting: the detection and classification of
neural action potentials, Network Computer Neural System, Vol. 9, 1998.

[2] B. Yu, T. Mak, X. Li, F. Xia, A. Yakovlev, Y. Sun, and C.-S. Poon, A Reconfigurable
Hebbian Eigenfilter for Neurophysiological Spike Train Analysis, Proc. International Con-
ference on Field Programmable Logic and Applications, pp.556-561, 2010.

[3] B. Yu, T. Mak, X. Li, F. Xia, A. Yakovlev, Y. Sun, and C.-S. Poon, Real-Time FPGA-
Based Multichannel Spike Sorting Using Hebbian Eigenfilters, IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, Vol. 1, pp.502-515, 2011.

[4] T. Chen, K. Chen, Z. Yang, K. Cockerham, and W. Liu, A biomedical multiprocessor
SoC for close-loop neuroprosthetic application, in International Solid-State Circuits Con-
ference, pp. 434-435, 2009.

[5] S. Haykin, Neural Networks and Learning Machines, 3rd ed., Pearson, New Jersy, 2009.

[6] S. -J. Lin, W. -J. Hwang, and W. -H. Lee, FPGA Implementation of Generalized Hebbian
Algorithm for Texture Classification, Sensors, Vol. 12, pp.6244-6268, 2012.

[7] L. S. Smith and N. Mtetwa, “A tool for synthesizing spike trains with realistic interfer-
ence,” Vol. 159, pp.170-180, Journal of Neuroscience Methods, 2007.

76

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

