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Abstract. This study proposes feature selection techniques to obtain a
set of significant foot anthropometric measurements that can assist cus-
tumers in the choice of footwear size and width. The results given by a
number of methods are averaged to provide a reliable set of features. Sev-
eral machine learning methods are used to evaluate the classification (for
the width) and regression (for the size) accuracies before and after feature
selection. The results prove the benefits of carrying out feature selection,
especially for the shoe width.

1 Introduction

In shoe industry, comfort is a crucial issue for the consumer. The comfort feel of
a shoe is subjective for each person and depends on many different factors, like
the design, fit and function of the shoe, the shock absorption qualities (padding),
materials, weight, isolation and also the particular foot shape, sensitivity and
kinetic and dynamic characteristics of the consumer (e.g. plantar pressure [1]).

There are many possible anatomic measurements that can be considered for
an optimal choice of size and width. To make measurements collection feasible,
it is necessary to minimize their amount. This paper is based on the application
of a variety of feature selection techniques to extract the most correlated an-
thropometric measurements with the desired outputs related to the shoe shape,
namely, size and width of the shoe. Different feature selection methods are
considered for classification (width) and for regression (size). After the feature
selection stage, several linear and non-linear machine learning techniques will be
used to evaluate the classification and regression accuracy on the dataset before
and after performing feature selection.

2 Data and methods

The data used for the experiments was provided by the Instituto Tecnológico

del Calzado y Conexas (INESCOP). The dataset contains 43 variables and 621
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samples corresponding to foot anthropometric measurements of 311 individuals.
The variables to predict will be the shoe size and shoe width. The width was
coded with three labels (Narrow, Medium and Wide) and was addressed as a
classification problem. On the other hand, as the size contained 11 possible
numeric labels in steps of half a size, it was treated as a continuous function
(i.e. a regression problem) and its estimated value was discretized a posteriori.
In every case, the input data were standardized to zero mean and unit variance.
A first correlation analysis was carried out to remove variables which were not
correlated with the outputs or were linear combinations of other variables. The
resulting dataset contains the 20 input variables listed in Table 1. These will be
called the pre-selected variables.

Var. Description Var. Description
8 Pro jected width 28 Standard toe medial width

10 Toe length 29 Standard toe lateral width
14 Heel width 34 Distal first phalanx girth
15 Heel medial width 35 Distal first phalanx height
16 Heel lateral width 37 Distal first phalanx medial width
17 High instep girth 38 Dista first phalanx lateral width
18 Medium instep girth 39 Arch height index
20 Mid metatarsal point (CL) distance 40 Arch displacement index

from the back-most point of the heel
22 Standard Ball height 41 Egyptian 0-No, 1-Yes
26 Standard toe girth 43 With bunion 0-No, 1-Yes

Table 1: Used variables.

2.1 Feature selection methods

A variety of feature selection methods have been proposed to obtain a reliable
subset of features. Some methods will be used for regression, some for classifi-
cation and some for both purposes. These methods are:

• Sequential Feature Selection (SeqFS): It chooses a subset of features by
sequentially selecting them until there is no improvement in the prediction
[2]. The model used to evaluate the performance at each iteration was a
neural network with a hidden layer composed of 10 nodes.

• Stepwise fit (SWfit): It uses a stepwise method to perform a multilinear
regression of the response values between the output data and the input
data. Predictive terms are added sequentially to the model according to
their importance in terms of p value [3].

• Genetic algorithm with delta test (GA-DT): Genetic algorithm that uses
the delta test as fitness function [4]. Delta test is an estimation of the
variance of the noise at the output of an unknown continuous function,
based on a nearest neighbor formulation [5].

• ReliefF: A general attribute estimator for classification that is able to ef-
fectively provide quality estimates of attributes in problems with depen-
dencies between them [6]. The regression version is called RReliefF.
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• Least Angle Regression (LARS): It adds the variables sequentially to the
model according to their correlation with the residual of the response [7].

• Least Squares Feature Selection (LSFS): Solves a least squares system and
orders input features according to their dependency on the outputs [8].

• Information Gain (IG): Evaluates the worth of an attribute by measuring
the information gain with respect to the class [9].

• Minimum Redundancy Maximum Relevance (mRMR): It selects variables
that have the highest relevance with the target class and are also maximally
dissimilar to each other [10].

• Sparse Multinomial Logistic Regression Method (SBMLR): Logistic re-
gression is used to build a generalized regression model that can handle
multiclass data. A constraint is used to shrink the model [11].

• Plus-L-takeaway-R feature selection (LR): Each iteration is divided in two
steps. First, sequential forward search is used to include L new variables.
Second, sequential backward search removes R variables [12].

3 Experimental setup and results

The feature selection methods used in this work were implemented in Mat-
lab (version R2012a). Some methods were adapted from PRTools Toolbox and
Weka. The data were randomly split into training (2/3) and test (1/3) subsets.
The feature selection techniques were evaluated on the training data and the test
data was left aside for testing the models. The feature selection methods were
applied to 20 different dataset splittings in order to obtain reliable results. In
each repetition, each variable was given a linear score between 0 and 1 according
to its position in the ranking. The scores were averaged for all repetitions and,
afterwards, they were averaged for all feature selection methods. The results,
both for size and width, are listed in Tables 2 and 3, respectively.

The next step is to prune out the unnecessary variables. To achieve this, we
have kept the minimum number of variables that explain 80% of the variance of
the outputs. These variables are highlighted in bold in Tables 2 and 3.

3.1 Results

Once the number of variables has been reduced, linear and non-linear predic-
tive models can now be applied to obtain the optimal size and width for a
particular customer. k-Nearest Neighbor (KNN) [13] (with k = 1) and Least
Squares-Support Vector Machine (LS-SVM) [14] (with radial basis function ker-
nels) models are used both for regression and classification. In addition, Robust
Multiple Linear Regression (RMLR) [7] and Linear Discriminant Analysis (LDA)
[13] are employed for regression and classification, respectively.

Fig. 1 shows the classification accuracy obtained by the KNN, LDA and LS-
SVM models for the width prediction, when data correspond to the pre-selected
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Var. SeqFS SWfit GA-DT RReliefF LARS LSFS Mean % O.V.* Rank
8 0.37 0.61 0.70 0.90 0.91 0.89 0.73 9.70 3

10 0.62 0.48 0.92 0.80 0.60 0.80 0.70 9.34 4
14 0.08 0.66 0.32 0.56 0.80 0.74 0.53 7.00 6
15 0.09 0.28 0.22 0.32 0.30 0.37 0.26 3.50 11
16 0.00 0.08 0.09 0.26 0.00 0.63 0.17 2.32 16
17 0.32 0.04 0.62 0.94 0.68 0.95 0.59 7.86 5
18 0.69 0.81 0.61 0.86 0.92 0.86 0.79 10.52 2
20 1.00 1.00 0.81 1.00 1.00 1.00 0.97 12.88 1
22 0.12 0.15 0.45 0.46 0.78 0.66 0.44 5.80 7
26 0.08 0.00 0.21 0.50 0.00 0.65 0.24 3.20 12
28 0.13 0.00 0.04 0.50 0.10 0.56 0.22 2.95 13
29 0.08 0.11 0.04 0.30 0.00 0.39 0.15 2.02 17
34 0.08 0.00 0.11 0.16 0.00 0.29 0.11 1.41 20
35 0.16 0.22 0.39 0.55 0.35 0.51 0.36 4.80 8
37 0.08 0.07 0.14 0.36 0.25 0.44 0.22 2.95 14
38 0.12 0.15 0.10 0.50 0.15 0.16 0.19 2.58 15
39 0.08 0.04 0.15 0.35 0.04 0.06 0.12 1.59 18
40 0.04 0.74 0.07 0.47 0.42 0.19 0.32 4.27 9
41 0.04 0.00 0.18 0.31 0.02 0.11 0.11 1.46 19
43 0.05 0.27 0.32 0.42 0.43 0.26 0.29 3.86 10

* % of the output variance

Table 2: Averaged scores and ranking of pre-selected features for size (regres-
sion). The selected features (accumulating 80% of the output variance) are
highlighted in bold.

Var. IG mRMR ReliefF SBMLR LR GA-DT LSFS Mean % O.V.* Rank
8 0.99 0.82 0.95 0.96 0.75 0.95 0.99 0.92 9.82 1
10 0.56 0.07 0.06 0.27 0.56 0.62 0.17 0.33 3.53 16
14 0.58 0.06 0.44 0.00 0.37 0.36 0.61 0.35 3.70 15
15 0.50 0.80 0.68 0.68 0.34 0.50 0.59 0.58 6.25 6
16 0.45 0.00 0.41 0.19 0.31 0.57 0.36 0.32 3.47 17
17 0.81 0.60 0.47 0.49 0.75 0.63 0.86 0.66 7.06 4
18 0.90 0.38 0.83 0.00 0.79 0.68 0.93 0.64 6.89 5
20 0.41 0.00 0.62 0.42 0.56 0.48 0.34 0.41 4.34 12
22 0.91 0.94 0.80 0.99 0.65 0.66 0.89 0.83 8.94 2
26 0.86 0.54 0.89 0.51 0.60 0.39 0.84 0.66 7.07 3
28 0.73 0.09 0.65 0.10 0.33 0.07 0.72 0.38 4.12 13
29 0.41 0.59 0.56 0.08 0.40 0.33 0.53 0.41 4.43 11
34 0.32 0.00 0.28 0.14 0.15 0.00 0.36 0.18 1.92 19
35 0.70 0.79 0.55 0.53 0.33 0.33 0.68 0.56 5.98 7
37 0.63 0.63 0.47 0.44 0.25 0.31 0.59 0.47 5.07 8
38 0.25 0.30 0.24 0.84 0.29 0.30 0.31 0.36 3.87 14
39 0.20 0.00 0.13 0.08 0.33 0.20 0.09 0.15 1.57 20
40 0.15 0.21 0.18 0.18 0.31 0.22 0.29 0.22 2.36 18
41 0.10 0.17 0.97 0.52 0.74 0.42 0.13 0.44 4.67 10
43 0.05 0.78 0.35 0.67 0.76 0.37 0.25 0.46 4.92 9

* % of the output variance

Table 3: Averaged scores and ranking of pre-selected features for width (classi-
fication). The selected features (accumulating 80% of the output variance) are
highlighted in bold.

and selected sets. As it can be observed, the accuracy rate is improved when
the most relevant variables are used to build the classification models. When
classifiers are trained with the pre-selected set, KNN outperforms the remaining
classifiers. However, when the selected set is used for their training, LS-SVM
improves the rest of models. It is for this classifier that the feature selection effect
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Fig. 1: Overall accuracy obtained by the three classification models: KNN, LDA
and LS-SVM in the width prediction.

KNN LDA LS-SVM
Class 1 2 3 1 2 3 1 2 3
PS 44.78 49.53 67.63 11.88 36.51 78.87 18.67 30.46 83.43

S 42.84 49.05 69.88 9.35 35.40 81.01 21.94 40.86 79.67

Table 4: Accuracy obtained by the three classification models: KNN, LDA and
LS-SVM, for each class with the pre-selected (PS) and selected (S) sets.

RMLR KNN LS-SVM
Original Flexible Original Flexible Original Flexible

PS 30.39 58.26 41.11 64.66 31.88 60.12
S 30.72 59.28 39.93 67.20 31.55 61.57

Table 5: Accuracy obtained by the three regression models: RMLR, KNN and
LS-SVM in the size prediction, for pre-selected (PS) and selected (S) sets.

becomes more noticeable. Table 4 shows the percentage of correctly classified
instances for each class (Narrow (1), Medium (2) and Wide (3)). The best
accuracy values are highlighted in bold. For KNN and LDA models, Table 4
shows that the accuracy decreases for classes 1 and 2, when the number of
variables is reduced, whereas it increases for class 3. However, the opposite
behavior is observed for the LS-SVM, where accuracy increases for classes 1 and
2, and decreases for class 3.

Regarding the size, Table 5 shows the accuracy rate estimated without (Orig-

inal) and with a tolerance of half a size up and a half a size down (Flexible).
As it can be observed, an improvement in the Flexible classification accuracy
is obtained by doing feature selection for the three models. However, in rela-
tion with the Original accuracy this behavior is only observed for the RMLR
model. Furthermore, Flexible accuracy rates are higher than the Original ones
as expected. The KNN classification model shows the best performance in both
Original and Flexible accuracy rates, whereas RMLR appears to be the worst
model in both accuracy measurements for the size prediction.
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4 Conclusions

This paper has analyzed how feature selection of anthropometric measurements
can affect the prediction of footwear size (regression problem) and width (clas-
sification problem). For this purpose, ten different feature selection methods
have been used in order to identify the most representative variables in both
cases. The accuracy rate has been measured by different linear and non-linear
models, including KNN, LDA, LS-SVM and RMLR. The results have suggested
that feature selection may improve the prediction accuracy, especially in the
width prediction case. In the case of size prediction, this improvement happens
when half a size tolerance has been considered. Without this tolerance, only the
prediction by RMLR improves the results.
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