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Abstract. We propose in this contribution a method for l1-regularization
in prototype based relevance learning vector quantization (LVQ) for sparse
relevance pro�les. Sparse relevance pro�les in hyperspectral data analysis
fade down those spectral bands which are not necessary for classi�cation.
In particular, we consider the sparsity in the relevance pro�le enforced by
LASSO optimization. The latter one is obtained by a gradient learning
scheme using a di�erentiable parametrized approximation of the l1-norm,
which has an upper error bound. We extend this regularization idea also
to the matrix learning variant of LVQ as the natural generalization of
relevance learning.

1 Introduction

Learning vector quantization (LVQ) as proposed by T. Kohonen is one of the
most popular methods for prototype based classi�cation of vectorized data [9].
Sato&Yamada proposed a modi�cation of this approach such that the learning
heuristic of LVQ is replaced by a stochastic gradient descent learning based on
a cost function [10]. The cost function is an approximation of the usual classi�-
cation error based on dissimilarity evaluations for the best matching prototypes.
This generalized LVQ (GLVQ) optimizes the hypothesis margin [5]. An improve-
ment of GLVQ performance can be obtained by relevance learning (GRLVQ), i.e.
weighting the data dimensions to distinguish the data classes [6]. High weight-
ing values indicate high relevance. The resulting relevance pro�le provides the
information about the importance of the data dimensions for the classi�cation
to be learned. Frequently, small but non-vanishing relevance values are obtained
for large parts of the relevance pro�les. This problem frequently occurs for high-
dimensional data like hyperspectra. This behavior is not su�cient in the light
of sparse models, where negligible spectral bands should be dropped o�, if the
classi�cation accuracy is su�ciently high.

In this contribution we propose a l1-regularization approach to obtain spar-
sity in relevance learning, i.e. sparsity in the relevance pro�le [8]. It is based
on the Least Absolute Selection and Shrinkage Operator approach (LASSO,
[14]) but realizing a gradient descent learning scheme whereas original LASSO
uses convex optimization. For this purpose, a di�erentiable approximation of
the l1-norm is considered [11]. We show further that this approach can easily
be transferred to the matrix learning GLVQ (GMLVQ, [13]) using the consistent
matrix norm. We illustrate the method for classi�cation co�ee hyperspectra to
distinguish di�erent co�ee sorts.
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2 Generalized Relevance and Matrix LVQ

We suppose for learning vector quantization approaches that the data are given
as vectors v ∈ V ⊆ Rn, and the prototypes of the LVQ model are collected in
the set W = {wk ∈ Rn, k = 1 . . .M}. Each training data vector v belongs to
a class xv ∈ C = {1, . . . , C}. The prototypes have labels ywk

∈ C indicating
their responsibility to the several classes. The GLVQ approach approximates
the classi�cation error to be minimized by the cost function

E (W ) =
1

2

∑
v∈V

f (µ (v)) with µ (v) =
d+ (v)− d− (v)

d+ (v) + d− (v)
(1)

as the classi�er function and d+ (v) = d (v,w+) denotes the dissimilarity be-
tween the data vector v and the closest prototype w+ with the same class label
yw+ = xv, and d

− (v) = d (v,w−) is the dissimilarity degree for the best match-
ing prototype w− with a class label yw− di�erent from xv. The classi�er function
µ (v) becomes negative if the data point is classi�ed correctly. The transforma-
tion function f is a monotonically increasing function usually chosen as sigmoid
or the identity function. The dissimilarity measure d (v,w) is usually chosen as
the squared Euclidean distance.

Learning in GLVQ of w+ and w− is performed by the stochastic gradient
with respect to the cost function E (W ) for a given data vector v according to

∂SE (W )

∂w+
= ξ+ · ∂d

+

∂w+
and

∂SE (W )

∂w−
= ξ− · ∂d

−

∂w−
(2)

with

ξ+ = f ′ · 2 · d− (v)

(d+ (v) + d− (v))
2 and ξ− = −f ′ · 2 · d+ (v)

(d+ (v) + d− (v))
2 . (3)

For the squared Euclidean metric we simply have the derivative ∂d±(v)
∂w± =

−2 (v −w±) realizing a vector shift of the prototypes.
Standard relevance learning replaces the squared Euclidean distance in GLVQ

by a parametrized bilinear form

dΛ (v,w) = (v −w)
>

Λ (v −w) (4)

with Λ being a positive semi-de�nite diagonal matrix [6]. The diagonal elements
λi =

√
Λii form the relevance pro�le weighting the data dimensions. During the

learning phase, the relevance parameter λi are adapted according to

4Λ ∼ −∂SE (W )

∂Λ
= −ξ+ ·

∂d+
Λ (v)

∂λj
− ξ− ·

∂d−Λ (v)

∂λj
(5)

realizing a stochastic gradient descent. An subsequent normalization has to be
applied such that

∑
i λ

2
i =

∑
i Λi,i = 1 is assured.

The obvious generalization of this scheme is to take the matrix Λ as a positive
semi-de�nite quadratic form Λ = Ω>Ω with an arbitrary matrix Ω ∈ Rm×n
[3, 13]. To avoid degeneracy det (Λ) > 0 is required [12]. Then equation (4)
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can be written as dΩ (v,w) = (Ω (v −w))
2
. The resulting derivatives in (2) are

obtained as ∂d±(v)
∂w± = −2Λ (v −w±), which are accompanied by the Ω-update

4Ωr1,r2 ∼ −
∂SE (W )

∂Ωr1,r2
= ξ+ ·

∂d+
Ω (v)

∂Ωr1,r2
+ ξ− ·

∂d−Ω (v)

∂Ωr1,r2
(6)

and subsequent normalization
∑
i,j Ω2

i,j = 1 [12]. We refer to this matrix variant
as GMLVQ.

3 Sparsity in Relevance and Matrix Learning by Gradient
LASSO Learning

For the LASSO method it is assumed that we want to optimize a cost function
depending on a parameter vector λ which has to follow a regularization condition
according to the l1-norm [7, 14]. In the context of GRLVQ this cost function is
E (W,λ) according to (1) with the parameters λi obtained from the relevance
metric (4). The LASSO approach adds a regularization term such that

min
λ
E∗ (W,λ) = E (W,λ) + ξ ‖λ‖1 (7)

with a weighting factor ξ > 0. Many optimization methods are known to solve
this problem. Yet, in the context of gradient descent learning in GRLVQ it would
be desirable to have a gradient learning scheme of LASSO, too. However, the

regularization term R (λ) = ‖λ‖1 =
n∑
i=1

|λi| is not di�erentiable with respect to

the λi. Fortunately, a di�erentiable approximation for R (λ) can be found [11]:
We split the absolute value |x| into |x| = (x)+ + (−x)+ with (x)+ = max {x, 0}.
This allows an approximation |x|α of |x| using the relation

(x)+ ≈ x+
1

α
ln
(
1 + e−αx

)
(8)

depending on the approximation parameter α [4]. We obtain

|x|α =
1

α
ln
(
2 + e−αx + eαx

)
(9)

with the upper bound ||x| − |x|α| ≤ 2 ln 2
α . Inserting this in R (λ) the gradients

are obtained as
∂R (λ)

∂λj
≈ tanh

(
αλj

2

)
. (10)

Analogously, for GMLVQ with l1-regularization via LASSO a regularization
term R (Ω) = ‖Ω‖1 is added with

‖Ω‖1 = max
1≤j≤n

m∑
i=1

|Ωij | (11)

being the matrix norm consistent to the l1-vector norm. Using the re-
cursion max (x1, x2, . . . , xn) = max (x1,max (x2, . . . , xn)) and the relation
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max (x, y) = 1
2 (x+ y − |x− y|) the regularization term dependency becomes

R (Ω) = R (|Ωij |). Thus we can apply again the above approximation (9). A
lengthy but simple calculation yields

∂R (Ω)

∂Ωst
≈ 1

2
tanh

(
αΩst

2

)
− T

2
(12)

with

T =
exp

(
−α

(
Ωst + Ωst

))
· (exp (2αΩst)− 1) ·

(
exp

(
2αΩst

)
− exp(2αΩst)

(1+exp(αΩst))
4

)
2 + exp

(
−α

(
Ωst − Ωst

))
+ exp

(
α
(
Ωst + Ωst

))
+

exp(α(Ωst−Ωst))
(1+exp(αΩst))

2

and

Ωst =
m∑

i=1;i6=s

|Ωit|α − max
1≤j≤d;j 6=t

m∑
i=1

|Ωij |α (13)

Further, it can be shown that 1
m‖Ω‖

2
1 ≤ ‖Λ‖1 ≤ n‖Ω‖21 is valid.

In conclusion, we derived a di�erentiable approximation of the l1-
regularization which can be used in gradient descent learning of, for example,
GRLVQ and GMLVQ.

4 Simulation Results

Figure 1: Mean spectra of the �ve investigated co�ee types.

We applied the sparsity relevance learning model to classify hyperspectral
short-wave infrared range (SWIR) spectral vectors of �ve co�ee types. Hyper-
spectral processing along with an appropriate analysis of the acquired high-
dimensional spectra has proven to be a suitable and very powerful method to
quantitatively assess the biochemical composition of a wide range of biological
samples [2]. By utilizing a hyperspectral camera (HySpex SWIR-320m-e, Norsk
Elektro Optikk A/S) we obtained a rather extensive data base of spectra of
�ve di�erent co�ee types (5000 spectra for each class). We used spectra in the
SWIR between 970 nm and 2, 500 nm at 6 nm resolution yielding 256 bands per
spectrum. Proper image calibration was done by using a standard re�ection pad
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(polytetra�uoroethylene, PTFE)[1]. After appropriate image segmentation the
obtained spectra were normalized according to the l2-norm and reduced to 200
bands ignoring the range 2, 000− 2, 500 nm. The mean spectra of the �ve types
are visualized in Fig. 1.

After standard training the GRLVQ model with full relevance pro�le yields
83, 96% accuracy. Starting with this solution the LASSO-model (7) was applied
with linearly increasing weighting factor ξ of the regularization term, the approx-
imation parameter α in (9) was set constant α = 5. We compare this LASSO-
approach with a sparsity model based on an entropy penalty term added to the
cost function of GRLVQ as suggested in [8]. Both models enforce the sparsity
of the relevance pro�les. We depict the results of the LASSO approach Fig. 2,
the other result is similar and has dropped because the lack of space. However,

Figure 2: Development of the sparsity of the relevance pro�le during LASSO-learning.
With increasing in�uence of the regularization term the pro�le becomes sparse.

the accuracy decrease di�ers. LASSO keeps longer a high accuracy than the en-
tropy approach, see Fig. 3 . Moreover, the entropy based method shows heavy

Figure 3: Development of the accuracies during sparsity adaptation according LASSO
(red) and entropy based (blue) regularization. We observe instabilities of the entropy
based method in the �nal phase of regularization.

instabilities if the relevance weights for spectral bands approach zero values at
the end of the regularization process.
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5 Conclusion

Sparsity in hyperspectral data analysis play an important role to concentrate on
those bands, which are important for classi�cation. Relevance learning as pro-
posed in GRLVQ o�ers a possibility to weight the bands. However, frequently
it delivers small but non-vanishing weights. Additional regularization can help
to obtain sparse models. We have shown in this contribution that LASSO l1-
regularization can be applied in gradient based online learning using a di�eren-
tiable approximation. We illustrate the method for an exemplary application of
co�ee classi�cation based on hyperspectral signatures.
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