
Evolutionary Computation based System
Decomposition with Neural Networks

Robert Kaltenhäuser1, Erik Schaffernicht2, Frank-Florian Steege1,3

and Horst-Michael Gross1 ∗

1- Neuroinformatics and Cognitive Robotics Lab - Ilmenau University of
Technology - Helmholtzplatz 5, 98693 Ilmenau - Germany

2- Center of Applied Autonomous Sensor Systems - Örebro University - Sweden
3- STEAG Powitec GmbH - 45219 Essen-Kettwig - Germany

Abstract. We present an evolutionary approach to divide a complex
control system into smaller sub-systems with the help of neural networks.
Thereto, measured channels are partitioned into several disjunct sets, rep-
resenting possible sub-problems, while the networks are used to assess
the quality of the resulting decomposition. We show that this approach is
well suited to calculate correct decompositions of complex control systems.
Furthermore, the obtained neural networks are used to predict important
process factors with considerable better approximation quality than mono-
lithic approaches that have to deal with all input channels in parallel.

1 Introduction

The identification of sub-systems in complex control processes is a very im-
portant part of design and optimization of control systems. Industrial plants,
like bioreactors or waste incineration plants often have many measuring devices
which provide information about process values like temperature, oxygen level,
and many more. On the other hand, there are many actuators which can influ-
ence the process proceeding at the respective plant. If the task is to design a
control system which optimizes the process, it is crucial to know which actuator
influences which process parameter. The goal of our approach is to automati-
cally decompose such a complex control system into smaller, possibly decoupled
sub-systems, which are more manageable and, therefore, can be better optimized
(see figure 1). To this end, a strategy has been developed, which makes use of
concepts and methods from the field of evolutionary computing. We show that
decomposed neural networks (NNs) produce better approximations in compari-
son to monolithic approaches.

In the following, in section 2 we first give an overview of existing approaches
for system decomposition and present our evolutionary algorithm in section 3.
Accordingly the testing environment, a simulation of a complex control process,
is explained in section 4.1 while the results of the decomposition are shown in
section 4.2. Finally, we draw conclusions in section 5.

∗This work has received funding from the German Federal Ministry of Education and Re-
search as part of the APD project under grant agreement no. 01LY1011B

191

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

2 Related Work

Different approaches for reducing the complexity of tasks have been explored
in the literature. Efforts were made towards spatial and functional problem
decomposition. For the former one, several NNs are trained to approximate a
single target channel y(t) with different input spaces. Depending on the current
input situation, the corresponding neural network is chosen for controlling the
task. This can be done e.g. with the Mixture of Experts approach combined
with an evolutionary algorithm to evolve NNs for the respective input spaces
[1]. In functional problem decomposition, the target channel y(t) is composed
of its functional components, e.g. y(t) = g (f1(x), ..., fNP

(x)). Here fi(·) are the
functions of the partial channels which are merged by the combining function
g(·). In [2, 3] the authors use modular NNs and, with the help of cooperative
co-evolution, evolve the structure of the modules such that they approximate
the partial channels.

The main drawback of both methods is that they are only able to decompose
a single channel y(t) into basic sub-channels, and, therefore are not suitable to
decompose complex processes consisting of many target channels and inputs.

Another way to handle a system’s complexity is feature selection [4]. The
approach is to prune irrelevant inputs and use only those which actually influ-
ence the target. Approaches for input pruning include statistical methods [5],
wrapper methods [6], embedded methods [7], or combinations of the aforemen-
tioned ones [8]. In theory, input pruning can be used for system decomposition
as well. A network Ni, which approximates channel xi using all other chan-
nels (x1, . . . , xj , . . . , xn) with j �= i as inputs is pruned. The remaining input
channels capture the dependencies to the channel xi. If training and pruning
is repeated for all channels, the resulting dependency-graph can be analyzed
for independent components, which represent sub-systems. Although satisfying
in theory, our tests show that input pruning often overestimates dependencies
which leads to closely meshed dependency graphs and makes it impossible to
decompose a system into separated sub-system as it is the aim of this paper.

In the following section, we present a new approach to combine methods
from evolutionary computing with the idea of input pruning to circumvent this
problem. As a result, we obtain NNs which represent the independent sub-
systems of the overall system.

3 Evolution for Automatic System Decomposition

The goal of our approach is to decompose a complex system consisting of n
channels x1, . . . , xn into m sub-systems S1, . . . , Sm (Si ∩ Sj = ∅) in a sense
of splitting different measurement channels into disjoint partitions, so that no
functional dependencies between channels of different partitions exist (see figure
1).

To get disjoint partitions, an evolutionary optimization is carried out. An
individual in the evolution is represented by a decomposition of the system

192

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

x1

x5

x3

x4

x2

x6
x7

x8

x9

x10

x12

x1

x5

x2x4

x11

x6

x7

x8
x10

x9

S1 S2 S3

x13

x11

x14

x17 x18

x15

x16

x3x15

x18

x17 x13

x16

x12x14

Fig. 1: Decomposition of a complex system with measurement channels xi and
unknown relations into three sub-systems/partitions S1, . . . , S3 with known re-
lations (gray boxes). A relation from e.g. x5 to x2, such that x2 = f(x5) is
represented as an arrow from x5 to x2.

consisting of an assignment of channels to partitions. At the start of the op-
timization, several initial decompositions are created by assigning them to a
randomly chosen partition. After this, they are assessed for their usability as
a system decomposition. For each partition a neural network is trained, trying
to approximate the current values xt

j of each channel xj ∈ Sj in the partition

at time t and taking past values xt−1
j , . . . , xt−l

j of the channels as inputs. The
resulting approximation error

E =

m∑

i=1

o∑

j=1

p∑

k=1

(yij(xik)− tijk)
2

is used as a fitness function for the evolutionary algorithm. Where p is the
number of training samples, m the number of partitions and o the number of
output-neurons for the corresponding partition. Moreover xik denotes the k-th
input-vector of the i-th partition, yij the output of the j-th neuron in the i-th
partition and tijk is the k-th target value for the corresponding neuron.

The basic idea of our approach can be described as follows: The more chan-
nels of an individual are assigned to an incorrect partition, the more of the
dependencies are crossing the borders of the partitions. Since the NNs are only
trained with values of channels from the same partition, individuals with a false
partitioning receive a high approximation error and a poor fitness score, since
required information for the approximation of the channels is missing. Only a
division of the channels in partitions that correspond with the real sub-systems
receives the best fitness and the minimal approximation error, since all the in-
formation to approximate and predict the current channel values is available.

Therefore, individuals with a high fitness and accordingly a good decompo-
sition should be reproduced using mutation and recombination. The fitness of
this newly created individuals can now again be evaluated by the approximation
error of NNs trained on them. This is repeated until a stopping criterion is met.
That way, the individuals coding particular system decompositions are evolved
until they ideally reach the optimal decomposition.

193

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Note that the optimal number of sub-systems can be automatically deter-
mined by the algorithm by permanently deleting empty partitions which arise
during mutation and recombination. Since the number of partitions constantly
decreases, we recommend to start the evolution with more partitions than truly
exist in the system. We used about twice the (suspected) size of the number of
real sub-systems.

Algorithm 1 Evolutionary System Decomposition with Neural Networks

Input: channels X = {x1, . . . , xn}, size of population μ, number descendants λ
for l = 1 → μ do

I(l) = {S(l)
1 , . . . , S

(l)
m } {create individual by random channel partitioning}

train neural network for every partition S(l) ∈ I(l)

F (l) = E(l) =
∑m

i=1

∑o
j=1

∑p
k=1 (yij(xik)− tijk)

2 {calculate fitness}
end for
repeat
for l = (μ+ 1) → (μ+ λ) do
select individual dq ∈ I based on fitness F {e.g. ranking selection}
I(l) = reproduce dq {mutation & recombination}
train neural network for every partition S(l) ∈ I(l)

F (l) = E(l) =
∑m

i=1

∑o
j=1

∑p
k=1 (yij(xik)− tijk)

2 {calculate fitness}
end for
delete λ individuals with the worst fitness minλ(F (I))

until stopping criterion is met
return decomposed system {Si|i = 1, . . . ,m} with Si ∩ Sj = ∅ , Si, Sj ⊂ X

4 Experiments

4.1 Implementation Details

We implemented the described methods using a (20+20) - evolutionary algorithm
with Lamarckism and a linear ranking selection for determining the parents of
the next generation. Moreover, we used uniform crossover with a crossover rate
of pC = 0.5 while the partitioning was mutated by randomly assigning a small
number of channels to other partitions. Thereby, we adapted the mutation rate
by a local variance adaption strategy. Afterwards, the evolution was executed
for a total of 500 epochs. See [9] for more details about the selected evolutionary
techniques.

For the training of the NNs the Levenberg-Marquardt algorithm with Bayesian
Regularization and cross-validation was used, and after training the networks
were pruned with the Optimal Brain Surgeon algorithm [10].

4.2 Results

The suggested method was tested on three simulated scenarios which are distin-
guished by different problem sizes, several levels of noise and by their complexity.

194

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

x1

x5

x3

x11

x4

x2

x6
x17

x8

91 90 9S

xSx15

x16
x14

x10x13

x0

x12

x1S

Fig. 2: Example for an improper decomposition of scenario 3. Dependencies
which cross the border of the sub-systems are marked by gray arrows.

Scenario 1 was the easiest one with five channels, two sub-systems and a low level
of noise, while scenario three, which is shown in figure 1, was that with the high-
est complexity with eighteen channels, three sub-systems, and a high noise-level.
The test of our algorithm was performed ten times for every scenario, and the
results were averaged.

For comparison purposes we calculated the approximation error for all tested
scenarios for single monolithic NNs trained on all target channels at once and
the approximation error of manually decomposed NNs, where the channels were
partitioned with the help of background knowledge. The same training scheme,
including Bayesian Regularization and Optimal Brain Surgeon, was used for all
networks. The resulting error values were averaged over 100 trials.

As a result for scenario 1 and 2 our algorithm derived system decompositions
which correspond perfectly to the real sub-systems. Even for the most complex
scenario tested here, scenario 3, 80% of the decompositions had been found out
correctly. Only 20% of the trials led to a suboptimal system decomposition.
One of them is shown in figure 2. Here, while sub-systems S1 and S3 had been
assigned to the right partitions, sub-system S2 had been split into two partitions
which indicates, that the evolutionary algorithm got stuck in a local optimum.

Scenario 1 Scenario 2 Scenario 3
Ēmon 4.152 · 10−5 0.3888 3.5178
Ēmdec 1.392 · 10−5 0.3345 3.3771
Ēadec cor 6.345 · 10−9 100% 0.1913 100% 3.1551 80%
Ēadec inc 0% 0% 4.1223 20%

Table 1: Test results on all data sets. Given is the mean approximation error
for monolithic NNs Ēmon, for manually decomposed NNs Ēmdec and for au-
tomatically decomposed NNs which resulted in a correct Ēadec cor or incorrect
decomposition Ēadec inc, with their respective proportion.

Additionally, the obtained error rates are shown in table 1. As expected, due
to the decreased number of weights and the reduced complexity, the error rates
of decomposed NNs are significantly lower than that of a monolithic approach.
Moreover, our algorithm found NNs with approximation errors, which were even

195

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

lower than the mean errors of the manually decomposed NNs. This can be
explained by the random factor in the training of NNs, e.g. as a consequence of
random weight initialization. While bad training results effected the averaged
results of our tests, they have no impact on the evolutionary algorithm, since
they receive a bad fitness and are rejected accordingly.

5 Contribution of this Paper

In this paper, we introduced a new algorithm to automatically decompose a
complex control problem into smaller, better manageable sub-problems.

The algorithm aims at decomposing a complex system comprised of several
channels into independent sets, such that no dependencies among channels of
different sets exist. This was achieved by an evolutionary algorithm which par-
titioned the channels into sets. The fitness of the resulting sub-systems can be
evaluated by approximating the channels of each partition by NNs. The parti-
tioning may then be evolved until the optimal decomposition is found.

We showed that our algorithm is able to correctly decompose even complex
systems into independent components and can reliably estimate the current num-
ber of sub-systems. Moreover, we showed that such a system decomposition is
able to create NNs with a considerable lower approximation error than mono-
lithic NNs. The decomposed NNs can be used e.g. for model predictive control
and enable human experts to handle sub-systems with much less complexity
than the whole system.

References

[1] M. H. Nguyen, H. A. Abbass, and R. I. Mckay. A novel mixture of experts model based
on cooperative coevolution. Neurocomputing, 70:155–163, 2006.

[2] V. Khare, X. Yao, B. Sendhoff, Y. Jin, and H. Wersing. Co-evolutionary modular neural
networks for automatic problem decomposition. In Congress on Evolutionary Computa-
tion (CEC), pages 2691–2698. IEEE Press, 2005.

[3] M. A. Potter and K. A. De Jong. Cooperative coevolution: An architecture for evolving
coadapted subcomponents. Evolutionary Computation, 8(1):1–29, 2000.

[4] E. Schaffernicht, V. Stephan, K. Debes, and H.M. Gross. Machine learning techniques
for selforganizing combustion control. KI 2009, pages 395–402, 2009.

[5] K. Torkkola. Feature Extraction: Foundations and Applications, volume 207 of Studies
in fuzziness and soft computing, pages 167–186. Springer Verlag, 2006.

[6] P. Somol, P. Pudil, J. Novovičová, and P. Pacĺık. Adaptive floating search methods in
feature selection. Pattern Recognition Letters, 20:1157 – 1163, 1999.

[7] L. Y. Cun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems, pages 598–605. Morgan Kaufmann, 1990.

[8] E. Schaffernicht, C. Moeller, K. Debes, and H.-M. Gross. Forward feature selection using
residual mutual information. In ESANN 2009, volume 1, pages 583–588, 2009.

[9] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford Univ. Press, 1996.

[10] B. Hassibi, D.G. Stork, and G.J. Wolff. Optimal brain surgeon and general network
pruning. IEEE International Conference on Neural Networks, 1:293 – 299, 1993.

196

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

