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Abstract. Various prototype based learning techniques have recently
been extended to similarity data by means of kernelization. While state-
of-the-art classification results can be achieved this way, kernelization loses
one important property of prototype-based techniques: a representation of
the solution in terms of few characteristic prototypes which can directly be
inspected by experts. In this contribution, we introduce several different
ways to obtain sparse representations for kernel learning vector quanti-
zation and compare its efficiency and performance in connection to the
underlying data characteristics in diverse benchmark scenarios.

1 Introduction

Machine learning techniques have revolutionized the way in which information
can automatically be extracted from given data sets in the form of clustering
prescriptions, functions, or similar. However, many state-of-the-art techniques
such as support vector machines (SVM) essentially act as black boxes. While
leading to nearly optimum classification accuracy in many cases, they hardly
reveal any insight into why a certain decision has been taken by a given model.
In complex settings, however, the latter becomes crucial since human insight
is often the only way to further specify a priorly unclear training setting or to
substantiate mere observations by causalities as often required in the medical
domain, for example. Due to this reason, there is an increasing demand of
interpretable models which provide a human understandable interface to their
decisions besides excellent classification accuracy [13].

One prominent example is offered by prototype based techniques such as
learning vector quantization (LVQ) or generalizations thereof such as proposed
in [11, 12]. These techniques rely on prototypical class representatives, and de-
cisions are taken based on the distance of data with respect to these prototypes.
Partially, the techniques also provide an inherent low dimensional visualization
of their decisions [3]. LVQ methods are restricted to vectorial data only. In
recent years, more general data structures are becoming more and more impor-
tant, such as graphs, trees, sequence data, XML, or the like [5]. Often, these
data can be addressed by means of a dedicated similarity measure or kernel.

Several extensions of prototype methods to general distances or kernels have
been proposed, see e.g. [8, 6, 1, 10, 7]. In particular relational or kernel ap-
proaches have obtained results which are competitive to state-of-the-art alter-
natives such as SVM [7]. However, one important property of prototype-based
techniques is often lost: prototypes are no longer given as explicit representative
points in the data space, rather, an indirect representation as a linear combina-
tion of an underlying (usually not explicitly given) feature space is used. Thus,
interpretability of the models is lost.
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In this contribution, we address the question of how solutions can be approx-
imated by sparse representations of the prototypes which offer a direct interface
to human experts. Thereby, we will compare different approaches: a simple
approximation of the prototypes by their closest data, an approximation of pro-
totypes by their closest sparse linear combination, and sparse training of LVQ
networks. We compare the result for different benchmark data sets.

2 Kernel robust soft learning vector quantization

We rely on a recent kernelized version of a probabilistic LVQ model [12, 7].
Assume data ξk ∈ R

n are labeled yk. A robust soft LVQ (RSLVQ) network
represents a mixture distribution characterized by m prototypes wj ∈ R

n. The
labels of prototypes c(wj) are fixed. σj denote the bandwidths. Mixture com-
ponent j induces p(ξ|j) = constj · exp(f(ξ, wj , σ

2
j )) with normalization constant

constj and function f(ξ, wj , σ
2
j ) = −‖ξ−wj‖

2/σ2
j . The probability of data point

ξ is defined as mixture p(ξ|W ) =
∑

j P (j) · p(ξ|j) with prior P (j) and param-
eters W of the model. The probability of a data point ξ and a given label y is
p(ξ, y|W ) =

∑
c(wj)=y P (j) · p(ξ|j). Learning aims at an optimization of the log

likelihood ratio

L =
∑

k

log
p(ξk, yk|W )

p(ξk|W )
.

For optimization, usually a stochastic gradient ascent is used which yields update
rules similar to LVQ2.1 provided class priors are equal.

Given a novel data point ξ, its class label is the most likely label y corre-
sponding to a maximum value p(y|ξ,W ) ∼ p(ξ, y|W ). For typical settings, this
rule can be approximated by the standard winner takes all rule.

Kernelization of this method assumes a fixed kernel k corresponding to a fea-
ture map Φ. We set kkl := k(ξk, ξl) = Φ(ξk)

tΦ(ξl). Prototypes are represented
by linear combinations of data

wj =
∑

m

γjmΦ(ξm)

The cost function of RSLVQ becomes

L =
∑

k

log

∑
c(wj)=yk

P (j)p(Φ(ξk)|j)∑
j P (j)p(Φ(ξk)|j)

.

We assume equal bandwidth σ2 = σ2
j , for simplicity. Further, we assume con-

stant prior P (j) and mixture components induced by normalized Gaussians.
These can be computed in the data space based on the Gram matrix because of
the identity ‖Φ(ξi)−wj‖

2 = ‖Φ(ξi)−
∑

m γjmΦ(ξm)‖2 = kii − 2 ·
∑

m γjmkim +∑
s,t γjsγjtkst where the distance in the feature space is referred to by ‖ · ‖2.

A stochastic gradient ascent of the cost function with respect to the prototypes
can be expressed in terms of the coefficients only [7].This adaptation performs
exactly the same updates as RSLVQ in the feature space if prototypes are in
the linear span of the data. Often, a further restriction to the convex hull takes
place.
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Note that, unlike vectorial RSLVQ, prototypes are represented implicitly in
terms of linear combinations. The inspection of a prototype thus requires to
inspect the coefficients γj representing the prototype and all data, the latter
usually being characterized in terms of pairwise similarities only. Further, an
adaptation step has squared complexity caused by the distributed representation
of prototypes. Thus, the method does no longer give interpretable results.

3 Approximation of the prototypes

Kernel RSLVQ (k-RSLVQ) yields prototypes which are implicitly represented
as linear combinations of data points wj =

∑
m γjmΦ(ξm). Since the training

algorithm and classification depends on pairwise distances only, simple linear
algebra allows us to compute the distance between a data point and a prototype
based on the pairwise similarity of the data point and all training data only, i.e.
the given Gram matrix, as specified above. However, direct interpretability and
sparseness of the prototype is lost this way.

Here we propose different ways to arrive at sparse prototype representations,
that means linear combinations where only very few coefficients γjm do not
vanish. In such settings, prototypes can be inspected by referring to the very
restricted set of data points which contribute to the prototype. We investigate
the following possibilities:

1. Sparse training: we enhance the cost function of RSLVQ by a term S(γ)
which prefers sparse solutions of prototypes. A typical choice is the L1

norm: S(γ) =
∑

jm |γjm|1. This constraint is weighted with parameter C
which is selected according to the given data set.

2. K-approximation: we substitute each prototype by its K closest exemplars
in the given data set as concerns the distance ‖Φ(wj) − Φ(ξm)‖2 in the
feature space. The latter can be computed based on the kernel.

3. K-convex hull: we delete all but the K largest coefficients γjm in the
coefficient vector γj . This is then normalized to 1:

∑
m γjm = 1.

4. Sparse approximation: we approximate a given prototype wj by its closest
sparse linear combination

∑
m αjmΦ(ξm) with small |αj |0 where the points

Φ(ξm) serve as (possibly overcomplete) basis vectors. Since this problem
is NP hard, we use a popular greedy approach as offered by orthogonal
matching pursuit (OMP) [2]. Since OMP relies on dot products only, we
can do it implicitly based on the kernel.

All approximations result in prototypes which are characterized by a small
number of data vectors only. The choices differ in the question whether proto-
types directly coincide with exemplars or they are given as linear combinations.
For the latter, coefficients can become negative for OMP, while 1. and 3. ensure
their location in the convex hull of the data.

4 Experiments

We compare RSLVQ and its sparse approximations on a variety of benchmarks as
introduced in [4]. Thereby, we particularly want to check whether characteristics
of the data allow to infer which approximation is best suited for the given task.
The data sets in [4] consist of similarity matrices which are, in general, non-
Euclidean. The matrices are symmetrized and normalized before processing.
Since the given similarity matrices do not constitute a valid kernel we apply
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standard preprocessing tools which transfer a given similarity matrix into a valid
kernel, as presented e.g. in [4, 9]. We test the two transformations Spectrum clip:
set negative eigenvalues of the matrix to 0, Spectrum flip: negative eigenvalues
are substituted by their positive values. In addition, we test the methods on the
raw data neglecting its negative eigenvalues. The characteristics of the data are
shown in Fig. 1.

• Amazon47 : This data set consists of 204 books written by 47 different
authors. The similarity is determined as the percentage of customers who
purchase book j after looking at book i.

• AuralSonar : This data set consists of 100 wide band solar signals corre-
sponding to two classes, observations of interest versus clutter. Similari-
ties are determined based on human perception, averaging over 2 random
probands for each signal pair.

• FaceRec: 945 images of faces of 139 different persons are recorded. Im-
ages are compared using the cosine-distance of integral invariant signatures
based on surface curves of the 3D faces.

• Patrol : 241 samples representing persons in seven different patrol units are
contained in this data set. Similarities are based on responses of persons
in the units about other members of their groups.

• Protein: 213 proteins are compared based on evolutionary distances com-
prising four different classes according to different globin families.

• Voting: Voting contains 435 samples with categorical data compared by
means of the value difference metric. Class labeling into two classes is
present.
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Fig. 1: Characteristic spectrum of the considered similarities. The data sets
differ as concerns negative eigenvalues corresponding to non-Euclideanity, and
the number of eigenvalues which are different from zero, corresponding to a high
dimensional feature space.

For training, we use the same setting as in [4], and we report the results of a
20 fold cross-validation. We compare k-NN and SVM results as reported in [4]
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with kernel RSLVQ which has been trained with or without sparsity constraint.
The settings for standard RSLVQ are taken from [7] as regards parameters. We
approximate the solutions obtained using RSLVQ using different values K and
different approximation techniques as specified above. If training with sparsity
constraint, an appropriate weighting parameter C is determined by binary search
such that a desired sparsity is obtained. The parameter C can be very sensitive
depending on the data, leading to non-trivial results in a small range only.

k-NN SVM k-RSLVQ sparse k-RSLVQ sparsity

Amazon47 16.95 75.98 15.37 (0.36) 43.40 (0.53) 1.00 72.70
clip 17.68 81.34 15.37 (0.41) 39.92 (0.31) 1.00 72.70
flip 17.56 84.27 16.34 (0.42) 43.18 (0.81) 1.00 72.70
AuralSonar 17.00 14.25 11.50 (0.37) 17.25 (0.78) 11.97 70.08
clip 14.00 13.00 11.25 (0.39) 10.75 (0.30) 12.75 68.11
flip 12.75 13.25 11.75 (0.35) 15.50 (0.76) 12.73 68.17
FaceRec 4.23 3.92 3.78 (0.02) 4.15 (0.01) 1.00 81.88
clip 4.15 4.18 3.84 (0.02) 4.13 (0.02) 1.00 81.88
flip 4.15 4.18 3.60 (0.02) 4.07 (0.02) 1.00 81.88
Patrol 11.88 40.73 17.50 (0.25) 41.67 (0.87) 6.67 72.32
clip 11.56 38.75 17.40 (0.29) 40.00 (0.59) 6.71 72.18
flip 11.67 47.29 19.48 (0.34) 41.56 (0.61) 6.68 72.27
Protein 29.88 2.67 26.98 (0.37) 38.84 (0.74) 22.19 47.77
clip 30.35 5.35 4.88 (0.17) 13.84 (0.38) 13.37 68.54
flip 31.28 1.51 1.40 (0.05) 2.21 (0.10) 13.52 68.19
Voting 5.80 5.52 5.46 (0.04) 5.11 (0.03) 64.35 63.02
clip 5.29 4.89 5.34 (0.04) 5.34 (0.03) 68.67 60.53
flip 5.23 4.94 5.34 (0.03) 5.80 (0.06) 59.92 65.56

Table 1: Results of RSLVQ and sparse training in comparison to alternative
classifiers. The standard deviation is given in parenthesis. Sparsity refers to the
number of nonzero coefficients per prototype in the left column and the loss of
density in percent in the right.

The results as reported in Tab. 1 show that the data sets Amazon47 and
Patrol do not allow sparse training without deteriorating the classification error.
This is mirrored in the high intrinsic dimensionality of these data sets as can be
seen from the matrix spectrum. For the other data sets, more than 60% of the
coefficients can be set to 0.

Tab. 2 displays the classification error if the learned models are approximated
by sparse counterparts. Interestingly, there is no clear favorite which method
is best and which degree of sparsity is suited, a larger sparsity not necessarily
implying a loss of accuracy (e.g. FaceRec). It seems that sparsity while training
does not improve the results of a subsequent sparse approximation in general.
Interestingly, some data sets allow an almost lossless representation using one
exemplar only (FaceRec, Voting), these data sets happen to be dominated by
few large eigenvalues when considering the spectrum. However, the precise ap-
proximation technique is vital in the latter case, the optimum relying on the
distance only, while the former case allows any type of approximation. Note
that all data sets can be accompanied by a sparse model which is almost of the
same quality as k-RSLVQ. The optimum approximation technique and whether
the technique has an influence at all, however, varies among the data sets.

5 Discussion

We have proposed different ways to arrive at sparse solutions for RSLVQ schemes
which open the way towards interpretable prototypes also for kernel RSLVQ.
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k-RSLVQ sparse k-RSLVQ
k-approximat k-convex hull OMP k-approximat k-convex hull OMP

Ama 36.10 41.12 32.02 15.37 22.68 43.91 49.25 43.08 43.08 46.12
clip 31.65 43.17 31.45 15.00 20.00 42.02 52.43 40.85 40.85 40.84
flip 31.28 45.73 33.15 16.46 20.37 43.85 56.59 43.21 43.21 43.57
Aur 25.13 20.00 55.94 25.00 38.00 29.08 26.67 29.81 17.50 29.75
clip 24.75 15.00 58.50 23.25 15.00 20.75 16.75 22.25 11.00 15.50
flip 24.75 17.62 61.50 19.75 26.00 26.00 21.50 27.50 15.00 26.25
Fac 3.70 36.93 3.84 3.78 3.68 4.14 37.18 4.15 4.15 4.15
clip 3.76 36.97 3.92 3.84 3.68 4.10 37.24 4.13 4.13 4.13
flip 3.33 36.98 4.21 3.60 3.60 4.13 37.12 4.07 4.07 4.07
Pat 54.31 25.19 67.98 26.77 48.75 54.36 24.68 65.09 40.94 53.85
clip 32.46 18.86 38.82 24.38 29.69 28.67 22.86 37.03 40.21 46.25
flip 37.42 20.60 40.63 25.42 33.33 29.47 24.23 40.12 41.98 49.90
Pro 55.12 47.53 42.09 33.14 52.44 48.76 47.80 44.53 43.95 57.79
clip 22.44 29.38 36.28 27.44 52.09 36.63 33.57 30.12 14.77 30.70
flip 23.26 24.88 25.35 3.95 49.07 30.81 28.26 18.84 3.02 26.74
Vot 8.56 9.48 86.21 82.53 15.57 13.59 15.69 62.82 41.15 15.52
clip 8.65 11.44 86.44 82.76 5.34 13.62 13.45 65.34 44.02 5.34

flip 7.84 10.03 86.95 82.53 5.46 12.82 17.42 65.46 38.39 6.55

Table 2: Results of sparse approximations of the obtained classifiers. For the
K-approximation and -convex hull the left column refers to K = 1 and for the
right value K = 10 was chosen. For OMP, the sparsity arises from the problem
formulation by setting the approximation quality. The best results are shown in
boldface.

Interestingly, it is indeed possible to obtain sparse representations for all data
sets within a benchmark suite, however, the optimummethod varies. Very simple
techniques such as an approximation by the closest prototypes seems to work as
well as formal optimization approaches such as provided by OMP.
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