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Abstract. Group independent component analysis (ICA) with special assumptions 
is often used for analyzing functional magnetic resonance imaging (fMRI) data. 
Before ICA, dimension reduction is applied to separate signal and noise subspaces. 
For analyzing noisy fMRI data of individual participants in free-listening to 
naturalistic and long music, we applied individual ICA and therefore avoided the 
assumptions of Group ICA. We also compared principal component analysis 
(PCA) and canonical correlation analysis (CCA) for dimension reduction of such 
fMRI data. We found interesting brain activity associated with music across 
majority of participants, and found that PCA and CCA were comparable for 
dimension reduction.  

Study of brain activations elicited by natural continuous auditory and visual stimuli is 
relatively new and a promising domain in the field of fMRI research[1-3].Generated 
brain responses by such stimuli are of much more complex nature than in commonly 
utilized controlled design (block or event-related) experiments. This yields to 
adopting more data-driven approaches rather than holding on more traditional 
methods following to the hypothesis-driven models[4]. Group ICA has been used for 
analyzing fMRI during real-world experiences [4,5]. Assumptions for Group ICA 
require at least the number of sources and their order to be invariant for different 
subjects [6]. However, it is unknown whether these assumptions are met in real life. 
Therefore, in this study we apply individual ICA to each participant’s fMRI dataset 
elicited by naturalistic, continuous and long piece of music. 
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  Before subjecting fMRI to ICA decomposition, dimension reduction using PCA 
with model order selection is a common pre-processing routine that helps in 
identifying and separating signal and noise subspaces.  
 Although fairly old method, CCA [7] has only been recently employed for pre-
processing [8] or post-processing [5] fMRI data. It finds correlated and uncorrelated 
subspaces from two datasets using second order statistics [8,9]. In an experiment to 
collect brain data, it is often expected to find the common information across different 
participants belonging to the same group. Therefore, CCA theoretically matches this 
goal, and its strength in the dimension reduction for ICA has been shown through the 
analysis of simulated and real fMRI data obtained during the controlled design 
experiment[8]. However, it is unknown whether CCA can also work well as the pre-
processing step for ICA to decompose very noisy fMRI data elicited during real-
world experiences. Present study compares performances of CCA, implemented 
according to [8], and more widely used PCA for dimension reduction for ICA. 

2. Method 

2.1. Data description 

Dataset here consists of continuous fMRI scans (time resolution was 2 seconds) 
obtained from eleven healthy musicians (mean age: 23.2 ± 3.7 SD; 5 females) while 
they listened to the tango 'Adios Nonino' by Astor Piazzolla with duration of 8 
minutes and 32 seconds. Six high-level musical features including Fullness, 
Brightness, Timbral Complexity, Key Clarity, Pulse Clarity, and Activity were 
extracted from the stimulus. Detailed information about the fMRI data can be found 
in [1]. 

2.2. Dimension Reduction 

2.2.1 PCA 

If we denote the matrix of observed centered (zero mean) signals by 𝑿𝑿 ∈ ℝ𝑛𝑛×𝑙𝑙, 𝑙𝑙 ≫
𝑛𝑛, then the goal of PCA is to find orthogonal transform diagonalizing the covariance 
matrix of 𝑿𝑿,𝑪𝑪𝒙𝒙𝒙𝒙 = 𝟏𝟏

𝒏𝒏
𝑿𝑿𝑿𝑿𝑻𝑻. This is achieved e.g. by eigenvalue decomposition: 

𝑪𝑪𝒙𝒙𝒙𝒙𝑽𝑽 = 𝑫𝑫𝑫𝑫, 
where𝑽𝑽 ∈ ℝ𝑛𝑛×𝑛𝑛 is a matrix whose each column contains eigenvectors and 𝑫𝑫 is a 
diagonal matrix of eigenvalues ranked decreasingly. 

2.2.2 CCA 

While PCA analyses one dataset at a time, CCA analyses two datasets to measure 
linear relationships between them. It finds two bases 𝑾𝑾𝟏𝟏and 𝑾𝑾𝟐𝟐 ∈ ℝ𝑛𝑛×𝑛𝑛for two 
centered data matrices 𝒀𝒀𝟏𝟏 and 𝒀𝒀𝟐𝟐 ∈ ℝ𝑛𝑛×𝑙𝑙, such that correlations between the 
projections 𝒁𝒁𝟏𝟏 = 𝒀𝒀𝟏𝟏𝑻𝑻𝑾𝑾𝟏𝟏 and 𝒁𝒁𝟐𝟐 = 𝒀𝒀𝟐𝟐𝑻𝑻𝑾𝑾𝟐𝟐 are mutually maximized. According to [8] 
CCA can be calculated by singular value decomposition of cross-covariance matrix of 
two whitened and normalized datasets: 

𝑪𝑪𝒚𝒚𝟏𝟏𝒚𝒚𝟐𝟐 = 𝐔𝐔𝐔𝐔𝚼𝚼𝑻𝑻, 
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where 𝑪𝑪𝒚𝒚𝟏𝟏𝒚𝒚𝟐𝟐 = 𝟏𝟏
𝒏𝒏
𝒀𝒀𝟏𝟏𝒀𝒀𝟐𝟐𝑻𝑻 is the cross-covariance matrix, 𝐔𝐔 and 𝚼𝚼 are two orthogonal 

bases, one for each input dataset, and 𝚺𝚺 contains singular values representing the 
canonical correlations. 

2.2.3 Dimension reduction 

In the both methods described above, dimension reduction is achieved in similar 
fashion. For PCA first k eigenvectors are selected from 𝑽𝑽 ∈ ℝ𝑛𝑛×𝑛𝑛 basis, such that it 
becomes 𝓥𝓥 ∈ ℝ𝑛𝑛×𝑘𝑘, and then input dataset 𝑿𝑿 is projected onto it: 𝖃𝖃 = 𝓥𝓥𝑻𝑻𝑿𝑿. The 
procedure is similar for CCA where 𝒀𝒀𝟏𝟏and 𝒀𝒀𝟐𝟐 are projected onto 𝐔𝐔 and 𝚼𝚼. 
 Neither of the presented methods estimates target dimensionality of the input 
data automatically. In fact, evaluating the number of sources (i.e. target dimensions) 
is one of the challenges in fMRI analysis, which is frequently solved by empirical 
approaches [10]. Nevertheless, several methods for estimation of number of sources 
from the data have been proposed [11,12]. We employed model order selection 
method Gap proposed in [13] and previously employed for EEG data due to its 
computing efficiency [14]. With different numbers of sources experimented, the 
strength of Gap was examined for dimension reduction. 

2.3. ICA decomposition  

In this study we decompose each participant’s fMRI dataset separately using spatial 
ICA, as opposed to the group-level approach where the data is concatenated first. The 
model of spatial ICA is 𝔁𝔁 = 𝓐𝓐𝒔𝒔, where 𝔁𝔁 ∈ ℝ𝑛𝑛×𝑙𝑙  is a matrix of fMRI scans (n 
denotes time points and l - voxels), 𝓐𝓐 ∈ ℝ𝑛𝑛×𝑘𝑘 is the mixing matrix containing 
respective time courses of the sources in 𝒔𝒔, and 𝒔𝒔 ∈ ℝ𝑘𝑘×𝑙𝑙  is the source matrix 
containing spatial activation patterns. If we denote dataset after dimension reduction 
by 𝐱𝐱, then the above model will become determined by 𝐱𝐱 = 𝓥𝓥𝑻𝑻𝓐𝓐𝒔𝒔 = 𝑨𝑨𝑨𝑨, where 
𝓥𝓥𝑻𝑻 ∈ ℝ𝑘𝑘×𝑛𝑛  is dimension reduction matrix obtained from the dimension reduction 
method, and 𝑨𝑨 = 𝓥𝓥𝑻𝑻𝓐𝓐, 𝑨𝑨 ∈ ℝ𝑘𝑘×𝑘𝑘  becomes the mixing matrix of the determined ICA 
model. The goal is to learn unmixing matrix 𝐖𝐖 such that: 𝐲𝐲 = 𝐖𝐖𝐖𝐖. After the 
decomposition, original time courses of extracted sources are reconstructed by 
projecting extracted sources back to the scan field [15] via 𝐔𝐔 = 𝐕𝐕𝐖𝐖−𝟏𝟏.  
 As a stochastic algorithm ICA is not intrinsically stable and therefore, it can 
provide different results if run several times. A software package Icasso [16] analyzes 
the stability and robustness of ICA decomposition. The idea of Icasso is to run ICA 
repeatedly N times (N=100 in this study), each time with randomly initialized 
unmixing matrix and to cluster extracted independent components into the predefined 
number of clusters. In this study, FastICA algorithm with the nonlinear function tanh 
was selected as the separation algorithm. For the clustering, the agglomerative 
hierarchical clustering with average-linkage criterion was used. The number of 
clusters was the same to the number of components extracted by ICA. For 
characterizing decomposition stability, cluster quality index 𝑰𝑰𝒒𝒒 was calculated, which 
is a parameter estimating compactness of each cluster and degree of separation from 
others [16]. It is calculated by: 
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𝑰𝑰𝒒𝒒 =
𝟏𝟏

|𝑪𝑪𝒎𝒎|𝟐𝟐
� 𝝈𝝈𝒊𝒊𝒊𝒊 −

𝟏𝟏
|𝑪𝑪𝒎𝒎||𝑪𝑪−𝒎𝒎|

� � 𝝈𝝈𝒊𝒊𝒊𝒊
𝒋𝒋∈𝑪𝑪−𝒎𝒎𝒊𝒊∈𝑪𝑪𝒎𝒎𝒊𝒊,𝒋𝒋∈𝑪𝑪𝒎𝒎

 

where 𝑪𝑪𝒎𝒎 denotes the set of estimated independent components in the cluster 𝒎𝒎, |𝑪𝑪𝒎𝒎| 
is the size of the cluster, 𝑪𝑪−𝒎𝒎 is the set of indices outside the cluster 𝒎𝒎, and 𝝈𝝈𝒊𝒊𝒊𝒊 is an 
absolute value of mutual correlations between estimated independent components.  It 
is a good measure for estimating stability of the extracted component as well as 
detecting possible overfitting. Therefore, 𝑰𝑰𝒒𝒒 is a suitable parameter for performance 
comparison of employed dimension reduction algorithms. 

2.4. Individual-level data processing 

Obtained fMRI images went through the pre-processing procedure described in [1]. 
Next, temporal course of each voxel in the dataset was filtered using digital filter 
based on Fourier transform. The cut-off frequencies of the band-pass filter were set to 
0.008Hz and 0.05Hz, determined by power spectrum of stimulus feature time series.  
 Dimension of the filtered data was reduced using two different methods. First, 
PCA and Gap were employed, where Gap estimated 46 sources. Next, CCA was 
performed on six pairs of subjects. We implemented CCA according to the algorithm 
proposed in [8]. However, for dimension reduction authors in [8] rejected CCA 
components with correlations below an arbitrary threshold of 0.5. Here we employed 
Gap method again that determined different number of sources for different pairs of 
datasets, varying between 43 and 45. To test if Gap performance was optimal we also 
experimented with different numbers of sources (k=20 and k=30).  
 Resulted six datasets (three for each dimension reduction method) were 
separately decomposed using Icasso [16].  

2.5. Group-level data analysis 

Obtained time courses of independent components were correlated with time courses 
of stimulus features. Significance thresholds of the correlations were set using Monte-
Carlo simulation presented in [1] and only significant correlations at the significance 
level p<0.01 were considered for further analysis. Finally, spatial maps with 
significant correlations were visually examined to find common stimulus-related brain 
activations. We considered common activation map only if it was shared between 
more than five (half of all) participants. 

3. Results 

For compactness of representation we denote CCA and PCA-based ICA results as 
PCA+ICA and CCA+ICA. Experiments showed that ICA decomposition stability is 
affected little by employed dimension reduction method. In the Fig.1 quality indexes 
for CCA and PCA are provided. Indeed, for all numbers of components the difference 
between two methods for mean ICA decomposition stability is subtle.  
 Visual examination of activation maps significantly correlated with one or more 
musical features (p<0.01) revealed one common map showing activation in Auditory 
cortex, shared between more than five participants. Table 1 summarizes the observed 
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common map for PCA and CCA. In overall, the spatial map was detected in 
activations of nine subjects for PCA+ICA and seven subjects for CCA+ICA. Due to 
the space limitation, spatial maps are not shown. 
 Manually reducing dimensionality to 20 and 30 resulted in less stable ICA 
decomposition for CCA as well as PCA. However, desired common map was still 
observed for both methods: for PCA+ICA among seven and six participants 
respectively. For CCA+ICA the common map was found in 7 participants’ activations 
regardless of the number of sources. 
 

 

       

4. Conclusions 

In order to study fMRI during real-world experiences, we proposed an individual-
level data processing and group-level analysis approach mainly based on ICA and 
correlation. Meanwhile, two different methods for dimensionality reduction were 
tested for ICA in processing such challenging data. 
 We found similar spatial maps with corresponding temporal courses 
significantly correlated with musical features among individual participants. For 
dimension reduction in processing fMRI during real-world experiences, we found 
both PCA and CCA performed reasonably well. 
 In addition, we repeated the process with two different numbers of sources to 
check whether the employed model order selection was optimal in estimating number 
of target dimensions. We found that the number of sources suggested by model order 
selection was optimal for ICA decomposition stability for both methods. Interestingly, 
in production of stimulus-related spatial maps CCA was less sensitive to lower 
dimensions than PCA in our experiment.  
 It should be noted that CCA was implemented according to [8], which does not 
precisely follow the conventional CCA definition [7]. In the future we will investigate 
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PCA+GAP+ICA
CCA+GAP+ICA
PCA+ICA(30sources)
CCA+ICA(30sources)
PCA+ICA(20sources)
CCA+ICA(20sources

CCA+GAP+ICA PCA+GAP+ICA
Fulness 3,4,5,10 3,7,10

Brightness 3,4,5,7,9,11 1,3,4,5,7,8,9,10,11
Timb. Complexity 0 8,11

Key Clarity 0 3
Pulse Clarity 0 0

Activity 3,4,5,9,10,11 3,4,7,10

Feature
Subject numbers Table 1: Summary of common 

spatial map. Numbers represent 
numbering of subjects and zero 
denotes absence of participant 
for which observed map was 
significantly correlated with 
acoustic features.   

Fig 1: Cluster quality 
indexes for CCA and PCA 
for GAP,30, and 20 
components. 
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the conventional CCA and Partial least squares [17] for dimension reduction of fMRI 
during real-world experiences. 
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