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Gower Street, London, WC1E 6BT - United Kingdom

Abstract. = We discuss a general technique that forms a differentiable
bound on non-differentiable objective functions by bounding the function
optimum by its expectation with respect to a parametric variational distri-
bution. We describe sufficient conditions for the bound to be convex with
respect to the variational parameters. As example applications we consider
variants of sparse linear regression and SVM training.

1 Variational Optimization

We consider the general problem of function minimization, min f(x) for vector z.
x

When f is differentiable and x continuous, optimization methods that use gradient
information are typically preferred over non-gradient based approaches since they
may take advantage of a locally optimal direction in which to search. However, in
the case that f is not differentiable or z is discrete, gradient based approaches are
not directly applicable. In that case, alternatives such as relaxation, coordinate-
wise optimization and stochastic approaches are popular. Our interest is to discuss
another general class of methods that yield differentiable surrogate objectives for
discrete x or non-differentiable f. The Variational Optimization (VO) approach
is based on the bound

f* = glelgf(x) < <f(x)>p(x‘9) = E(@)
where (-),, denotes the expectation with respect to the probability density function
p defined over the solution space C. The parameters 6 of the distribution p(z|9)
can then be adjusted to minimize the upper bound E(#). This bound can be
trivially made tight provided the distribution p(x|0) is flexible enough to allow all
its mass to be placed in the optimal state * = argmingec f(2z). The variational
bound is equivalent to an objective smoothed by convolution with the variational
distribution, with the degree of smoothing increasing as the dispersion of the
variational distribution increases. The gradient of E(#) is given by

oE 0
5 = 5 | f@alo)as.

The existence of this derivative depends on interchanging differentiation and in-
tegration. We can bring the differential under the integral sign provided:

(i) f(x)p(z|f) is Lebesgue integrable and differentiable with respect to 6

(ii) there exists an integrable function F': C — R such that:

0

S5 i) < Flo)
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for all 8. These weak conditions mean that a large class of problems, in which f is
non-differentiable or = discrete, have differentiable bounds. For example, consider
the non-differentiable objective f(z) = x for x > 0 and f(z) = 0 for x < 0. For
x normally distributed with mean 6 and unit variance, p(z|0) = N (z]6,1), E is
smooth, with 22 = A (6]0,1).

We now describe sufficient conditions for E(#) to be convex in 6. We first
introduce the general concept of an expectation affine distribution.

Definition (Ezpectation affine) A distribution p(z|6) is expectation affine if, for
linear functions «, 8, distribution ¢(z) and function f,

<f(x)>p(z\9) - <f(a(9)z +ﬂ(9))>q(2).

Theorem 1 Let f(z) be a convex function and p(x|0) an expectation affine dis-
tribution. Then E(0) = (f(2)) (ye) s convez in 0.

Proof Defining A\=1—-\ € [0,1] and using the fact that p is expectation affine,
for any two values of 0

E(\) + 7\) = <f(/\(a (61) 2 + 861) + A(a (62) 2 + 5(92)))> "

Since f is convex, f(Axy + Azy) < Af(x1) + Af(z2) and hence
By +302) < X(f(al0)z +5(600)))  +3(7(@(02)z + 5(62)))
< AE(61) + AE(62).

a(z)

2 Lasso Sparse Least Squares Regression

For D-dimensional inputs =", outputs ¥, n = 1,..., N, and positive regularizing
constant A, lasso sparse regression minimizes [I]

N
flw) = Z (y" —wa”)Q +/\Z lwi| = c+w'b+w' Aw +/\Z |w|
n=1 % %

with ¢ = > (") b= —2 S, ytat, A =3 "™, The term Y, lwy| is
non-differentiable at the origin and hence standard gradient based optimization
algorithms cannot be directly applied. We consider a Gaussian variational dis-
tribution p(w|f) = N (w|u, ). The Gaussian distribution can be shown to be
expectation affine, so from Theorem [I] the bound E(u, C), with

PO =Y (0w Y (i

is jointly convex in (u, C') for Cholesky decomposition ¥ = CCT. This bound can
be expressed in closed-form:

i i ok
E(u,C) :C+MTb+MTAu+trace(AE)—i—)\Z,ui(l—QqS(—%))+2_e ax2,
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Fig. 1: (a) The solid line represents the function |w| and the dashed lines the
bound (|w[) xr(|,,02) Plotted as a function of y for three different values o €
{0.1,0.5,1} (from bottom to top in the figure). (b) The lasso objective function
f(w) plotted for A =2, A =4, b= —1, ¢ = 0. In this case the optimal w based
on the lasso objective is w = 0 but the optimal w for VO is slightly larger than
zero. (¢) A =2, A=4,b= —7, ¢ =0. The optimal w for both lasso and
VO are non-zero and numerically very close. As we move further away from the
non-differentiable point, the bound more closely matches the objective, resulting
in a closer match of their optima.

where ¢(z) = [*_ e~V /2 )\ 2rdy.

2.1 Lasso Experiments
We generated a sparse D = 200 dimensional parameter vector with components

0 with probability 0.5
w; ~ < N (u]5,1) with probability 0.25
N (u;| —5,1) with probability 0.25.

We then created a set of N = 200 training inputs z™ in D-dimensional space
from the standard multivariate normal distribution A (2|0, ). The outputs are
y" = u'x™ + " where " is Gaussian random noise with mean zero and standard
deviation &1 S |uTz"|, chosen to obscure but not dominate the clean outputs.
We set A = 30D to give solutions with sparsity roughly the same as the initial
parameter vector u. To minimize E(u,C), at each iteration we fixed ¥ = CCT
and updated p using a diagonal approximation to the Newton method (to avoid
the cost of inverting the full Hessian). For gradient E} and Hessian elements E;

the updates were p?*® = p¢'d — 0.1 g,_;,_ . We used an initial covariance matrix of
3 = 0.17 and reduced it by a factor of 0.9 at each iteration. The initial estimate
for u was a vector of zeros. We terminated when the mean absolute difference in
the solution elements between iterations was less than 10715 of the mean absolute
value of the elements of the current solution and took this terminal u to be the
estimate for arg min,, f(w).

We tested our method against a number of standard minFunc lasso solvers/l]

Since the true optima are not known, we measured the success of the algorithms

lyww.di.ens.fr/~mschmidt/Software/minFunc.htm
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Algorithm Solution time (SD) | Relative Error (SD)

Variational optimization 0.1308 (0.0405) 1.923 x 107'% (6.01 x 1071°)
Shooting 0.0676 (0.0209) 2.656 x 10716 (3.17 x 10719)
Iterated ridge regression 0.1645 (0.0844) 4.004 x 107 (1.19 x 107*3)
Smoothing (integral sigmoid) 1.2305 (0.3381) 2.638 x 107 (9.19 x 1076)
Smoothing (vz2 + ¢) 1.1385 (0.3673) 1.471 x 10715 (1.86 x 1071%)
Projection 0.3121 (0.0726) 5.325 x 1071¢ (2.85 x 1071%)
Sub-gradients 1.3478 (0.3273) 6.038 x 107" (9.42 x 10719)

Table 1: Performance and time taken (in seconds) for algorithms solving lasso
problems. All algorithms were implemented in MATLAB and run on a 2.27GHz
4GB Windows machine. Results are the average of 500 experiments.

relative to the best solution fess found by any of the algorithms on each problem
instance. In Table [[l we give the mean and standard deviation of relative errors
(f — foest)/(foest)- Whilst the shooting method is optimal, VO provides solutions
of similar quality to two other minFunc smoothed methods (the first approximates
the L; norm using an integral of two sigmoid functions and the second uses
the bound vz2 + ¢, for ¢ > O)E The results indicate that VO is capable of
approximating the global optimum well in moderate time. For ¥ = 02 we show
in [2] that VO finds the optimum of f to within a specified maximal error Ay,
provided

1 A2D? AD
o< Jirace () <\/< o + Aytrace (A)) - \/—2_71_) )

2.2 Fused Lasso Sparse Regression

The shooting algorithm solves for each component w;, keeping the others fixed,
and cycles through components to convergence. This is very effective in the
standard lasso problem since the objective only weakly couples the components
of the vector w. In contrast, the fused lasso problem induces additional sparsity
between adjacent elements by using the regularization

D D
A1 Z |’U)z| + Ao Z \wl — wi—l‘-
i=1 =2

The additional second term introduces strong dependencies between adjacent
components and componentwise shooting methods struggle to converge [3]. As
for the standard lasso case, we can readily obtain a bound using a Gaussian vari-
ational distribution and analytic expressions for the gradient and Hessian. For
the experiments, u; was generated as in the previous problem and all subsequent

2The improvement of VO over other smoothing approaches is most likely accounted for by
implementation differences and our reduction of ¥ at each iteration. For further discussion of
the impact of changing covariance see [2].
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elements were sampled from

Uj_1 with probability 0.5

0 with probability 0.25
W1~ N (u;15,1)  with probability 0.125

N (u;| —5,1) with probability 0.125.

For each experiment we created N = 5000 training inputs z" each of dimension
D = 500 from the standard multivariate normal distribution. The outputs were
given by y™ = u'z™ + €" where €” is random noise with mean zero and standard
deviation %1 iLV:1 luTz™|. Regularization parameters \; = 500 and Ay = 200
were chosen to yield solutions w with sparsity similar to that of u. We used
initial standard deviation 0.1, and shrunk it by a factor 0.9 at each iteration.
For comparison we used the SLEP package [4] which is based on a version of
Nesterov’s method [5], a two step gradient method with backtracking line search;
this has very competitive performance compared to other state-of-the-art solvers.

Using VO with a shrinking variance and convergence tolerance of 1076, the
relative error compared to SLEP was consistently small, having mean 1.59 x 10~
over the 1000 experiments and standard deviation 3.79 x 107®. The mean of
the relative distances Lo(ws — w,)/Lo(ws) between each VO solution w, and
SLEP solution w, was 0.0135. The mean CPU time for VO was 0.0947s and for
the SLEP algorithm 0.0724sH Despite its simplicity, VO therefore does not suffer
from the convergence problems of the shooting method and has good performance

compared to the state of the art.

3 Discussion

Due to space restrictions, we provided details for only a single application. How-
ever, the method is easily applicable to other problems. As a second example
application, we briefly discuss SVM training. For a dataset with inputs 2™ and
class labels y™ = +1, n = 1,..., N, the hinge-loss form of the SVM minimizes
(see e.g. [0])

N N
FBb)=BTKB+C> max{l— Y Knnp™—by",0}

n=1 m=1

for kernel K,,,,. This objective is convex but non-differentiable. For VO we use
Gaussian distributions over the parameters: [ distributed with mean pg and
covariance 02] and b independently with mean p; and variance o2, giving the
upper bound f* < E, with
N
L\ 2
E= U[TaKW? + trace(o?K) + C Z v (V") + e~ (%r) /271

n=1

where 1" =1 — Zan:l Knmpg' + ppy™ and (s")? =02+ Zan:l K,mo?. Due to
the convexity of f, F is jointly convex in pu,o. In [2] we compare VO against

3SLEP is coded in C, so comparing speed to our MATLAB implementation is inconclusive.
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Chapelle’s primal approach [6] and a range of classical SVM solvers, showing that
VO again has excellent empirical performance. See [2] for full details.

To our knowledge, little attention has been given to VO or its relation to other
approaches. In [7], minimizing f(z) is considered by first defining the distribution
p(z) = %eﬁf(‘””), B > 0, where Z normalizes p. We can find an approximation to
p(z) by minimizing

KL(p[p) = <logp(x|9)>p(z‘9) -p <f(x)>p(x‘9) ~+constant.

E(0)

Here p(z]6) is chosen to ensure that E(f) is tractably computable. Whilst
this method does not in general provide a bound on f*, if the entropic term
(log p(2(0)) 49y is constant with respect to 6, then minimizing E(6) is equiva-
lent to VO, namely maximizing (f(z)),,g)- This occurs for Gaussian p(z|0) =
N (x|, Y) and fixed ¥ — in general, however, the two approaches are different.
Estimation of distribution algorithms (EDAs) are a broad set of optimization
algorithms for the problem min,, f(w). An EDA starts with a prior distribution
po(w) over the solution space. At each iteration this is then used to generate
a new set of candidates {w™}. The distribution of next generation candidates
is then py1(w) = F(pe(w), {f(w™)},{w"}) where F characterizes the particular
form of the EDA. Berny [8] considers a similar approach for binary optimization
problems, using sampling to approximate the expectations; this can be viewed
therefore as an approximate version of VO. More generally, when VO is used with
expectations approximated by sampling, it can be classified as an EDA.
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