
Sensitivity to parameter and data variations in

dimensionality reduction techniques
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Abstract. Dimensionality reduction techniques aim at representing high-
dimensional data in a meaningful and lower-dimensional space, improving
the human comprehension and interpretation of data. In recent years,
newer nonlinear techniques have been proposed in order to address the
limitation of linear techniques. This paper presents a study of the stability
of some of these dimensionality reduction techniques, analyzing their be-
havior under changes in the parameters and the data. The performances of
these techniques are investigated on artificial datasets. The paper presents
these results by identifying the weaknesses of each technique, and suggests
some data-processing tasks to improve the stability.

1 Introduction

In recent years, we have witnessed an unprecedented data revolution. Sensors
and other data sources, such as social networks, e-government open data, etc.,
pervade our lives and a huge amount of data is available in many different fields,
such as medical imaging, process control and text mining, just to mention a
few. As a consequence, we obtain not only better but also bigger datasets.
This requires to have suitable techniques for analyzing and visualizing all these
data. Typically, these data are high-dimensional, so it is not possible to directly
visualize them, in a two/three dimensional lattice. It is at this point that dimen-
sionality reduction (DR) techniques play a key role: they make a transformation
of these high-dimensional data into a meaningful visualization with a reduced
dimensionality.

DR includes various techniques that are able to construct meaningful data
representations in a space of given dimensionality. Linear DR is a well-known
field with techniques such as principal component analysis (PCA) [1] or multi-
dimensional scaling (MDS) [2, 3]. Unlike linear DR, nonlinear DR techniques
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[4] have the ability to deal with complex manifolds, which is a typical fact with
real-world datasets which are likely to lie on nonlinear manifolds. In this field,
techniques appeared later, especially with nonlinear variants of multidimensional
scaling [5] and neural approaches [6, 7]. However, in the beginning of this cen-
tury, a renewed interest in DR techniques emerged and new nonlinear algorithms
based on spectral techniques were proposed. Some of these techniques are Isomap
[8], Local Linear Embedding (LLE)[9] and Laplacian Eigenmaps (LE)[10]. Also,
non-convex techniques, such as Stochastic Neighbor Embedding (SNE) [11] and
t-Stochastic Distributed Neighbor Embedding (t-SNE) [12], were proposed.

In this paper, we focus on the analyses of DR techniques attending to their
stability under variations in the parameters and in data. Although some re-
views and analysis have been published [4, 13, 14], some questions referring to
the uncertainty of the resulting projections remain open, despite being of par-
ticular importance for a practical use of the methods. This paper contributes
to answering this questions. Section 2 introduces the motivation and the aim
of this work. Section 3 describes the experimental methodology, and Section 4
illustrates both the results and the conclusions arisen from the study.

2 Stability of dimensionality reduction techniques

In dimensionality reduction, we transform a set of N high-dimensional vectors,
X = [xi]1≤i<N , into N low-dimensional vectors (d << D), Y = [yi]1≤i<N .
Mathematically, a DR technique can be understood as an application f : RD →
R

d, where d < D. The general idea of DR is to embed, in the visualization
space, close –or similar– points next to each other, while keeping large distances
among faraway –or dissimilar– points.

Several ways of constructing the embedding exist. A general approach is to
preserve pairwise distances, with an appropriate metric [5, 7]. Another possibil-
ity is using a probability-based approach to obtain a pairwise similarity matrix
[11, 12]. Also, another smart way to address this problem is using a graph-based
model of data, whose edges exist depending on the known entries of the pair-
wise distance matrix. In this approach, the weights of the edges are determined
according to the nature of the data. Finally, the embedding can be constructed
retaining the global [8] or the local structure of data [9, 10].

If the stability of DR algorithms is analyzed attending to parameter and data
variations, certain behaviors are expected. For instance, graph-based solutions
have a major problem if the constructed graph is not completely connected –a
typical situation with clustered datasets–, even if the complete pairwise distance
matrix is known. In this case, they are not capable of reducing the complete
datasetX, whereas methods based on pairwise distances or similarity matrix are.
Moreover, the behavior of various graph-based algorithms may differ. Local-
based graphs have a larger dependency on small changes in the data points than
global-based ones. This implies that if newer points are added to a dataset, the
embedding should have more differences in local than in global coordinates with
respect to the original embedding. If adding a moderate number of new points
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heavily modifies the representation, this is considered as negative for visualiza-
tion purposes, because there is no consistency in the resulting embeddings.

On the other hand, the problem of DR can be solved in different ways.
Attending to whether the objective function contains local optima or not, tech-
niques can be classified [13] into non-convex and convex, respectively. Most of
the newer techniques, such as Isomap, LLE or LE, are part of the second group,
whereas SNE or t-SNE are in the group of the non-convex techniques. Convex
techniques imply an eigenvalue decomposition. This mechanism introduces an
uncertainty in the embedding, that results in possible geometrical variations,
such as mirroring, rotation and translation, for the same dataset. On the other
hand, non-convex algorithm embeddings are usually quite difficult to compare,
because they also experience geometrical variations and they are usually initial-
ized with a set of random points and then iteratively computed.

Attending to visualization purposes, the stability of DR techniques is an
important question. The more stable the visualizations obtained with DR tech-
nique under small changes are, the easier it is to obtain visual insights in datasets,
which can result into an improved knowledge discovery process. The study made
in this paper is intended to provide an initial approach to help in the choice of the
most suitable algorithm attending to visualization features, such as geometrical
variations or cluttering.

3 Experimental methodology

To evaluate the stability of DR techniques, we present four experiments. Several
DR methods are used and compared according to each stability criterion. The
experiments are carried out on four well-known synthetic datasets: Swiss roll,
helix, broken swiss roll and twin-peaks–see second column in Figure 1.

In this analysis, we selected the following DR techniques: PCA, Isomap,
LLE, LE and t-SNE. The parameter settings for the experiments are shown in
Table 1.

Technique Parameters Settings
PCA None None

Isomap k: number of neighbors 5 < k < 20
LLE, LE k: number of neighbors 5 < k < 45
t-SNE Perplexity: size of a soft K-ary neighborhood 5 < P < 45

Table 1: Parameter settings for the experiments.

A brief description of the experiments and their objectives is shown below.
While experiments 1 and 2 analyze the techniques and the influence of the pa-
rameters, experiments 3 and 4 are oriented to usual situations when working
with real-datasets.
Experiment 1. Using the same dataset (N = 1000 points), data points are
introduced to the DR technique in a random order. By applying this experiment,
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geometrical variations in the projections are expected to appear.
Experiment 2. The objective of the experiment is to analyze the stability of
the DR algorithms under changes in their parameters. Thereby, using identi-
cal datasets (1000 points), we test the behavior of each technique analyzing the
continuity of the projections with different values for the parameters: number of
neighbors for convex techniques and perplexity, size of a soft K-ary neighbor-
hood, for t-SNE.
Experiment 3. Starting with a dataset of 1000 points, we increase its size to
1100, 1500 and 2000 points and each DR technique is trained. The objective
is to observe which of the selected DR techniques perform more stably with
incrementally changing datasets.
Experiment 4. We introduce different sets of points over the same topological
space –i.e. swiss roll manifold–, with the objective of studying which technique
yields the more stable results.

In order to improve the behavior and the stability of these DR algorithms,
we propose two simple, easily applicable and low computational pre- and post-
processing methods.

1. For convex DR techniques, we propose the use of Procrustes Analysis [15],
a least-squares orthogonal mapping for manifold alignment. This post-
processing method aligns the shape of a new projection according to a
previous one, obtaining a linear transformation that minimizes the sum of
squared errors between points. We only focus on rotation and translation,
as scaling can lead to cluttered visualizations. Since this algorithm makes
a comparison point by point, it can only be used with datasets that share
points, so it is not applied to Experiment 4.

2. For t-SNE, we apply a pre-processing methodology: we fix for each run
identical initial conditions for the location of [yi], drawn randomly from
N(0, 10−4I). By doing that, the randomness of the initialization is avoided,
while the order of presentation of points in the gradient descent remains
random.

4 Results and Conclusions

Due to paper length constrains, only the most relevant results are shown in
Figure 1 –the complete experiments can be consulted here1.

In Exp. 1, the general behavior of the techniques is reasonably stable, ex-
cluding t-SNE due to the randomness in the initialization, whose performance is
really improved with the pre-processing. Rotation and mirroring effects, which
are the usual variations among different orders, are easily avoided using Pro-
crustes Analysis for manifold alignment, as in the cases of LLE, Isomap and
LE.

In Exp. 2, attending to the influence of the parameters, the behavior of LLE
and LE is quite unstable. Both techniques tend to converge into a single point

1http://gsdpi.dieecs.com/actividad/stability-of-dr-techniques/
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In general, local methods are more likely to be influenced by small changes
in both data and parameter variations. LE and LLE tend to provide cluttered
visualizations, whereas data points in t-SNE, Isomap and PCA are much more
scattered. t-SNE, due to the nature of its gradient, tends to form small clusters
in the embedding. It is interesting to emphasize that if the visualization of
the whole dataset is a major requirement, graph-based techniques are not a
good solution, due to the proper limitation in the construction of the graph.
In contrast, both PCA and t-SNE are always capable of projecting the whole
dataset, although the quality of the embedding is generally better in t-SNE,
specially when working with non-linear manifolds. The performances of the
pre-processing via manifold alignment are higher if the shapes are similar.

As future work, this analysis can be extended considering the behavior with
real-world datasets, regarding the stability against outliers and studying alter-
natives to the pre- and post-processing approaches proposed.
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