
An empirical analysis of reinforcement learning

using design of experiments

Christopher J. Gatti1, Mark J. Embrechts1, and Jonathan D. Linton2 ∗

1 Rensselaer Polytechnic Institute – Dept. of Industrial and Systems Engineering
Troy, NY - USA

2 University of Ottawa - Telfer School of Management
Ottawa - Canada

Abstract. This study uses a design of experiments approach to under-
stand the behavior of a neural network to learn the mountain car domain
using the TD(λ) algorithm. A large experiment is first performed to char-
acterize the probability of empirical convergence based on three parameters
of the TD(λ) algorithm (λ, γ, ε), and a logistic regression model is fitted
to this data. A detailed analysis of the parameter subspace finds that,
upon convergence, these parameters significant affect convergence speed
and mean performance, though performance differences are minimal.

1 Introduction

Reinforcement learning has had a handful of successes in challenging domains,
including Backgammon [8] and helicopter control [6]. However, this learning
method has not had nearly the success of other machine learning approaches,
and this may be due to our limited understanding of the complex interactions
between the learning algorithms, functional representations, and domain char-
acteristics. Theoretical analysis of reinforcement learning is limited to rather
simplistic scenarios [9], and this motivates the use of empirical methods to un-
derstand the behavior of reinforcement learning [1, 2, 7]. However, empirical
studies often use simple parameter studies and assess effects by comparative
observations [7], which cannot easily reveal parameter interactions. A more effi-
cient and statistically rigorous approach is to use formal design of experiments
approaches [4]. The purpose of this study is to use a design of experiments
approach to understand the effects of three parameters of the TD(λ) algorithm
when using a neural network to learn the mountain car domain.

2 Methodology

This study is based on coupling a reinforcement learning application, the moun-
tain car domain, with an experimental design, and this section describes each
component of this experimental system. We use this work as a proof-of-concept
in applying design of experiments to understand the performance of reinforce-
ment learning. Consequently, we restrict this work to a relatively simple domain

∗The authors acknowledge the support of the National Sciences and Engineering Research
Council of Canada.

221

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

and a fundamental model-free learning algorithm, however these methods can
be used to understand other learning algorithms in additional domains.

2.1 Mountain car domain

The mountain car domain [5] which places a car in a valley, where the goal is to
get the car to drive out of the valley. The car’s engine is not powerful enough
for it to drive out of the valley, and the car must instead build up momentum
by successively driving up opposing sides of the valley. The state of the car is
defined by its position x ∈ [−1.2, 0.5] and its velocity ẋ in[−1.5, 1.5], and the
goal is located at x = 0.5. At the beginning of each episode, the x is uniformly
randomly sampled from [−1.2, 0.5] and ẋ = 0. The dynamics of the car follow:

xt+1 = xt +Δtẋt ẋt+1 = ẋt +Δt
(
−9.8 m cos(3xt) +

f
m a− μ ẋt

)

where Δt = 0.01 is the time step, m = 0.02 is the car’s mass, f = 0.2 is the
engine force, and μ = 0.5 is a friction coefficient. The variable a represents
the action taken by the agent, where a = −1 for driving backwards, a = 0 for
neutral, and a = 1 for driving forwards. At every time step that the car has not
reached the goal, the agent receives a reward (i.e., penalty) r equal to x. When
the car reaches the goal, the agent receives a reward of 1, and the episode ends.

2.2 Agent representation

A three-layer neural network is used to represent the agent and to learn the value
function V (st, at), which represents the value of pursuing action at while in state
st. The network has 2 inputs, corresponding to the state st = [xt, ẋt]

T , 21 hidden
nodes, and 3 output nodes that represent the values of the three actions. The
hidden and output layers use tanh and linear transfer functions, respectively.
Each time a network is created, new weights are initialized by uniform random
sampling over [−0.1, 0.1]. The learning rates α are initialized by layer using a
heuristic similar to that described in [3]. Input-hidden (αhi) and hidden-output
(αoh) learning rates are initially set to 1/

√
n where n is the number of nodes

in the preceding layer, and αoh is then divided by
√
3. All learning rates are

divided by 1/(4·500)
min(α) , which is based on the maximum number of time steps (500),

resulting in αoh = 0.0028 and αhi = 0.0005.
For each experimental run, a network is trained for a maximum of 2000

episodes, where each episode consists of one attempt at trying to get the car to
the goal. Network weights are updated at every time step using the temporal
difference algorithm (TD(λ)) [7]. The general form of the weight updates at
time t follows wt = wt + αgt where gt is a λ-discounted update over all time
steps up to and including t. The hidden-output layer (oh) and the input-hidden
layer (hi) updates are computed, respectively, as:

(gt)oh = λ (gt−1)oh + δoyh (gt)hi = λ (gt−1)hi + δhzi

222

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

where:
δo = f ′(vo) eo δh = f ′(vh)

∑
o

eowoh

The quantities f ′(vo) and f ′(vh) are the transfer function derivatives evaluated
at the induced local fields vo =

∑
h wohyh and vh =

∑
i whizi, respectively,

where yh = tanh(vh) and zi is the value of input node i (all values are from time
t). At the beginning of each episode, all values of g are set to zero.

The error e at time t is a 3-element vector for the 3 output nodes o:

eo =

{
rt+1 + γV (st+1, at+1)− V (st, at) if o = at

0 if o �= at

where γ is the next-state discount factor, rt+1 is the reward at time t + 1, and
at and at+1 are the actions taken at times t and t+ 1.

For each experimental run, a newly initialized network is trained and tested in
the mountain car domain. A network is considered to have converged if it satisfies
both training and testing convergence criteria. Training convergence requires two
conditions: 1) the range of the 200-episode moving average of the number of time
steps for the car to reach the goal is less than 10 time steps, and 2) all episodes
in the last 200 episodes require less than the maximum number of allowed time
steps (500), otherwise a maximum of 2000 episodes is allowed. During training,
the agent pursues an ε-greedy action selection procedure (ε = [0, 1]) in which it
selects the action with the greatest predicted state value 100ε% of the time, and
it selects a random action 100(1 − ε)% of the time. Following training, agent
performance is tested using 200 test episodes in which it uses a pure exploitative
policy (i.e., ε = 1). Testing convergence requires that the car reach the goal in
all 200 test episodes, and performance was quantified by the average number of
time steps required to reach the goal over the 200 test episodes.

2.3 Experimental design and analysis

The goal of this work is to understand the effects of λ, γ, and ε with respect
to learning convergence and performance; this work is not aimed at optimizing
(i.e., tuning) parameter settings. This study was based on a single experimen-
tal design with a two-stage analysis. The first analysis is aimed at assessing
network convergence over a large parameter space. A full factorial experiment
(D1) is run with the following continuous level settings for each parameter: λ
over [0.1, 0.9] incremented by 0.1, γ over [0.95, 0.99] incremented by 0.01, and
ε = {0.7, 0.8, 0.9}. This experiment therefore consists of 135 factor-level com-
binations, with 10 replications at each factor-level combination. The outcome
for this experiment is a binary variable indicating (empirical) convergence; re-
call that convergence requires that the network converge during both training
and testing. A logistic regression (LR) model is then created to estimate the
probability of convergence based on λ, γ, and ε in D1.

The second analysis aims to determine the effects of λ, γ, and ε on per-
formance over a smaller parameter space in which the network frequently con-
verges. The smaller parameter space D2 is a subset of and is extracted from D1

223

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

0.2 0.4 0.6 0.80.
95

0.
97

0.
99

λ

γ

ε = 0.7
0.2 0.4 0.6 0.80.

95
0.

97
0.

99

λ
γ

ε = 0.8
0.2 0.4 0.6 0.80.

95
0.

97
0.

99

λ

γ

ε = 0.9

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1: Empirical probability of convergence over D1 for values of ε.

(D2 ⊂ D1), where D2 consists of the following level settings: λ = {0.6, 0.7, 0.8},
γ = {0.7, 0.8, 0.9}, and ε = {0.97, 0.98, 0.99}. These factor levels were chosen
after assessing network convergence over D1. This design is a 3× 3 full factorial
design, with 10 replications at each of the 27 factor-level combinations. Analysis
of variance (ANOVA) with Type II sums of squares is used to determine if λ,
γ, and ε (and their interactions) has significant effects on the convergence speed
(i.e., episode at which training converged) and on the mean testing performance.
Non-convergent runs are qualified as undefined responses, as opposed to missing
data, and these runs are removed from the data for the analysis, resulting in
unbalanced groups and the need for Type II sums of squares.

3 Results

Experimental design D1 resulted in 77.85% (1051/1350) of the runs converging
during training, and 48.59% (656/1350) converging based on both training and
testing convergence criteria. The proportion of times that unique factor-level
combinations converged ranged from 0/10 to 10/10, confirming that some regions
of the parameter space that are clearly better than others. Figure 1 shows
the empirical probabilities of convergence over D1. A LR model was created
to estimate network convergence using linear, quadratic, and interaction terms
(Table 1), and nearly all terms have statistically significant coefficients. The LR
model was used because it provides a compact functional form for predicting
convergence in this application, though other function approximators, such as
neural networks, could be used to model the convergence probability.

Experimental design D2 resulted in 98.89% (267/270) of the runs converging
during training, and 67.78% (183/270) converging based on both training and
testing convergence criteria. Figure 2 shows boxplots for the convergence episode
and mean testing performance versus the levels of λ, γ, and ε. Table 2 shows
the ANOVA models for the logarithm of these responses. Parameters λ and
γ were found to have a significant interaction effect on convergence speed, and
although the interpretation of their main effects is therefore not straightforward,
it is likely they have significant main effects based on their low p-values; ε also
has a significant main effect. For the mean performance after convergence, γ is

224

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Model term Estimate Standard Estimate Deviance Deviance
error p-value reduction p-value

Intercept -3497.89 432.65 <0.001 —
λ -544.71 202.52 0.007 0.545 0.460
γ 7381.65 863.16 <0.001 228.685 <0.001
ε -391.58 153.81 0.011 33.398 <0.001
λ2 -4.26 1.19 <0.001 11.763 <0.001
γ2 -3896.11 439.18 <0.001 79.475 <0.001
ε2 -5.76 13.646 0.67 0.061 0.805
λ : γ 557.82 208.00 0.007 59.748 <0.001
λ : ε 860.75 251.49 <0.001 5.655 0.017
γ : ε 412.61 156.08 0.008 1.299 0.254
λ : γ : ε -876.96 258.31 <0.001 11.720 <0.001

Residual deviance: 1438.1 (df = 1339)
Hosmer-Lemeshow GOF: p = 0.318

Table 1: Summary of the logistic regression model.

0.6 0.7 0.8

60
0

12
00

C
on

ve
rg

en
ce

ep
is

od
e

0.97 0.98 0.99

60
0

12
00

0.7 0.8 0.9
60

0
12

00

0.6 0.7 0.8

25
35

45

M
ea

n
pe

rf
.

(t
im

e
st

ep
s)

λ
0.97 0.98 0.99

25
35

45

γ
0.7 0.8 0.9

25
35

45

ε

Fig. 2: Boxplots of episode of performance measures versus λ, γ, and ε.

the only parameter that had significant effects, and γ = 0.99 resulted in the best
(smallest) mean performance (Fig. 2).

4 Discussion and Conclusions

This study employs design of experiments and statistical analysis to aid in un-
derstanding the behavior of TD(λ) in a specific domain. Experimental design
D1 shows that the network empirically converges to a stable solution in a fairly
small region of the parameter space, however, convergence is not guaranteed.
Experimental design D2 indicates that significant effects are of low order. While
all parameters have an effect on convergence speed, only γ has a significant effect
on mean performance (though the effect is only ∼ 4 time steps), and λ and ε
do not affect the quality of the solution. In other words, while λ, γ, and ε and
their interactions significantly affect convergence, they have little or no practical
impact on mean performance. A natural extension of this work is to use addi-

225

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Convergence episode

Model term SS F -ratio p-value
λ 0.207 48.864 <0.001
γ 0.231 54.603 <0.001
ε 0.295 69.557 <0.001
λ : γ 0.037 8.812 0.003
λ : ε 0.016 3.752 0.054
γ : ε 0.005 1.164 0.282
Residuals 0.747

Mean performance

Model term SS F -ratio p-value
λ 0.000 0.000 0.996
γ 0.043 20.275 <0.001
ε 0.005 2.368 0.126
Residuals 0.381

Table 2: Analysis of variance for the logarithm of the two response variables; the
colon between variables indicates a variable interaction (SS = sums of squares).

tional design of experiments methods, such as response surface methodologies,
to optimize parameter settings.

From a design of experiments perspective, this experiment has a unique char-
acteristic such that some runs may not converge, and this scenario has received
little or no attention in the literature. These unique outcomes motivated the use
of the sequential analysis in order to separate convergence and parameters effects.
Experimental design D2 focused on a small parameter space that converged very
frequently, though it did not always converge. Furthermore, caution should be
used when extrapolating the results to parameters outside of the ranges used in
this study, as severe nonlinearities were observed at the parameter space edges
(e.g., λ = 0.01 or 0.99, or γ = 1). This study investigated the effects of the
primary variables of the TD(λ) algorithm, though the learning rate α likely also
has an effect on learning, and this could be included in future work. Finally, the
extensibility of the findings presented herein to different representations, learn-
ing algorithms, or domains is unknown, and more exhaustive studies are needed
to form generalizable conclusions.

References

[1] S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor critic algorithms.
Automatica, 45:2471–2482, 2009.

[2] C. J. Gatti, M. J. Embrechts, and J. D. Linton. Parameter settings of reinforcement
learning for the game of Chung Toi. In IEEE International Conference on Systems, Man,
and Cybernetics, pp. 3530–3535, Anchorage (Alaska), 2011.

[3] C. J. Gatti and M. J. Embrechts. Reinforcement Learning with Neural Networks: Tricks
of the trade. In P. Georgieva, L. Mihayolva, and L. Jain (eds.), Advances in Intelligent
Signal Processing and Data Mining, pp. 275–310, Springer-Verlag, 2012.

[4] D. C. Montgomery, Design and Analysis of Experiments. Wiley, New York, 2008.

[5] A. W. Moore, Efficient memory-based learning for robot control. PhD Thesis, University
of Cambridge, 1990.

[6] A. Y. Ng, H. J. Kim, M. I. Jordan, and S. Sastry. Inverted autonomous helicopter flight
via reinforcement learning. In Intl. Symp. on Experimental Robotics, MIT Press, 2004.

[7] R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press, 1998.

[8] G. Tesauro. Temporal difference learning and TD-Gammon, Communications of the
ACM, 38:58–68, 1995.

[9] J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic program-
ming. Machine Learning, 22:59–94, 1996.

226

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

