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Abstract. We propose in this paper a bit–based classifier, picked from
an hypothesis space described accordingly to sparsity and locality princi-
ples: the complexity of the corresponding space of functions is controlled
through the number of bits needed to represent it, so that it will include
the classifiers that will be most likely chosen by the learning procedure.
Through an introductory example, we show how the number of bits, the
sparsity of the representation and the local definition approach affect the
complexity of the space of functions, where the final classifier is selected
from.

1 Introduction

The learning process to train a classifier, according to the Structural Risk Mini-
mization (SRM) principle [1], consists first in selecting an appropriate hypothesis
space and then, in this space, choosing the function characterized by the best
trade-off between underfitting and overfitting tendencies [1]. The first task is
known as model selection phase and is strictly linked with the estimation of the
size (and, thus, of the complexity) of the hypothesis space [1, 2, 3]: examples are
the selection of the number of hidden neurons in Artificial Neural Networks or
kernel hyperparameters tuning in Support Vector Machine (SVM) models. The
second step, instead, is known as training phase for creating a model, which is
subsequently exploited on new samples in the feed-forward phase.

In this paper, we move the spotlights on the model selection phase and we
show how general-purpose benefits on the learning process of classifiers can be
obtained by introducing bit–based hypothesis spaces, i.e. classes of functions
where models are described through a limited number of bits. In the last decades
several works have been devoted to adapt Machine Learning (ML) approaches
to specific hardware platforms [4, 5, 6, 7] and, in particular, to analyze the
effects of parameter quantization on the training and feed-forward phases [8,
9, 10, 11]. Motivations for these activities are usually linked to application-
specific requirements and thus include the necessity of implementing a trained
system into a resource limited hardware device, the need to accelerate the process
of learning with dedicated hardware, and the energy-sparing requirements of
applications based on mobile stand-alone devices (e.g. smartphones).

We propose, instead, an innovative bit-based approach to properly shrink
the size of the hypothesis space (and thus to reduce its complexity) by tuning
the number of bits, used for representing the classifiers, so to more reliably
estimate the generalization ability of models. In this framework we also show
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how encapsulating the notions of sparsity [12] and local complexity [13] in the
description of the hypothesis space can lead to further improvements in the
estimation of the generalization ability of classification models.

For these purposes, the paper is organized as follows: in Section 2 we intro-
duce the bit–based hypothesis space, while in Section 3 we recall some measure
of complexity in order to present, in Section 4, the positive effects of the ex-
ploitation of this type of hypothesis space on the learning process.

2 Defining a bit–based hypothesis space

In the framework of supervised learning the goal is to approximate a relationship
between examples from a set X and outputs from a set Y: we assume in this
work X ∈ R

d and Y ∈ {±1}. The relationship between examples and outputs is
encapsulated by a fixed, but unknown, probability measure P over Z = X × Y.
Let us suppose that a training set Dn = {(x1, y1), . . . , (xn, yn)} is sampled
according to P and let us denote as F a class of {±1}–valued functions f ∈ F on
X . The learning algorithm mapsDn to f ∈ F , while the accuracy in representing
the hidden relationship P is measured with reference to a loss function �(f(x), y):
in particular, we will exploit the hard loss function �H(f(x), y) = (1− yf(x))/2
that counts the number of misclassified samples.

Following the ideas of [1], we define a function f(x) = sign [w · x+ b] with
w ∈ R

d, b ∈ R, where sign(·) = +1 if (·) ≥ 0 or sign(·) = −1 otherwise:
in other words, F is the set of all the linear separators in the original input
space X . Finding the best f ∈ F can be pursued through an Empirical Risk
Minimization (ERM) approach:

min
w,b

n∑
i=1

�H(f(xi), yi) s.t. w ∈ R
d, b ∈ R (1)

which is an NP problem. The conventional approach consists in relaxing the
hard loss by exploiting an upper bound of the number of errors [1] and, thus,
in introducing a constraint to adjust the size of the class [14], according to the
SRM principle [1].

On the contrary, in this paper we propose to introduce a bit-based regu-
larization term in Problem (1) in order to restrict the hypothesis space. As a
matter of fact, any learning algorithm will be run on a computational work-
station, which will be characterized by a finite (even though large, in several
cases) precision. We can thus switch from the conventional representation of
wj∈{1,...,d}, b ∈ R to a bit-based representation of the main quantities in Prob-
lem (1): wj∈{1,...,d}, b ∈ {−2κ + 1, . . . , 2κ − 1}. κ is the number of bits needed
for representing F and it influences the complexity of the space: if we use more
bits we can represent more functions and then we have a more complex space.
Consequently Problem (1) becomes:

min
w,b

n∑
i=1

�H(f(xi), yi) s.t. wj∈{1,...,d}, b ∈ {−2κ + 1, . . . , 2κ − 1} . (2)
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As a sparse representation of the solution is desirable to further improve
the classifier performance on new samples generated from P [12], we introduce
another hyperparameter, that is the number of wj∈{1,...,d} different from zero.
In order to include this constraint, Problem (2) must be reformulated as:

min
w,b

n∑
i=1

�H(f(xi), yi) s.t.

{
wj∈{1,...,d}, b ∈ {−2κ + 1, . . . , 2κ − 1}∑d

j=1 [wj �= 0] ≤ ζ.
(3)

According to the ideas of [13, 3], we can further shrink the hypothesis space:
let D′

n′ = {(x′
1, y

′
1), . . . , (x

′
n, y

′
n)} be another set of data consisting of n′ samples

(originated by P). Then we can choose only those functions which are charac-
terized by an error rate, on this set, below a predetermined threshold: in fact,
these classifiers will be most likely chosen by the optimization procedure, being
them the models able to combine a small misclassification rate on Dn and a good
generalization performance on the set D′

n′ , independent of Dn. By reformulating
Problem (3), we have:

min
w,b

n∑
i=1

�H(f(xi), yi) s.t.

{
wj∈{1,...,d}, b ∈ {−2κ + 1, . . . , 2κ − 1}∑d

j=1 [wj �= 0] ≤ ζ,
∑n′

k=1 �H(f(x′
i), y

′
i) ≤ ε.

(4)

Since D′
n′ is not always available, part of the samples of Dn can be reserved for

this purpose, analogously to the approach proposed in [3].

2.1 From theory to practice

Problem (4) is, once again, an NP problem: however, in practice, the solution
can be achieved through a branch and bound approach [15]. In particular, in our
work, we exploit for this purpose a state–of–the–art solver, CPLEX [16], which
anyhow requires that Problem (4) is reformulated as:

min
w, b,
ξ, ξ′,
η̂, η̌

n∑
i=1

ξi s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi
(
wTxi + b

) ≥ θ −Θξi, ∀i ∈ {1, . . . , n}
y′k

(
wTx′

k + b
) ≥ θ −Θξ′k, ∀k ∈ {1, . . . , n′}

wj∈{1,...,d}, b ∈ {−2κ + 1, . . . , 2κ − 1}
wj∈{1,...,d} ≤ 2N η̂j , wj∈{1,...,d} ≥ −2N η̌j∑d

j=1 (η̂j + η̌j) ≤ ζ,
∑n′

k=1 ξ
′
k ≤ ε

ξi∈{1,...,n}, ξ′k∈{1,...,n′}, η̂j∈{1,...,d}, η̌j∈{1,...,d} ∈ {0, 1}
(5)

Problem (5) is the conventional Integer Linear Programming (ILP) problem
formulation, where θ, Θ ∈ R are greater than zero. Theoretically speaking, θ
should be as small as possible (θ → 0+) and Θ as big as possible (Θ → +∞)
[17]. In practice θ and Θ should be distant (in terms of orders of magnitude)
enough so to avoid modifying the nature of the problem.
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Summarizing, in this last formulation the hyperparameters that allow to
control the size of the class are three1: (I) the number of bits κ ∈ {1, . . . ,∞};
(II) the sparsity of the representation ζ ∈ {1, . . . , d}; (III) the minimum accuracy

ε ∈
{
minf∈F

∑n′

k=1 �H(f(x′
i), y

′
i), . . . , n

′
}
, computed on a dataset independent

of the training setDn, that a function must reach to be included in the hypothesis
space.

Finally note that the kernel-based extension of Problem (5) is straightforward
but out of the scope of this paper.

3 Assessing the complexity of F
In order to assess the complexity of the hypothesis spaces described in Section
2 we can ideally exploit the Vapnik’s data independent complexities [1]: though
these measures are very powerful, data dependent ones of Bartlett et. al. [18, 2]
give better insights on the learning process and can be more easily computed in
practice (e.g. [19]).

One of the most exploited data dependent measure is the Maximal Discrep-
ancy. In order to compute the empirical Maximal Discrepancy M̂n(F) of an
hypothesis space F , we simply have to randomly split the dataset in two halves,
switch the labels to the samples in one of the two halves and calculate:

M̂n(F) = 1− 2 inf
f∈F

1

n

⎡
⎣ n

2∑
i=1

�H(f(xi), yi) +
n∑

i=n
2 +1

�H(f(xi),−yi)

⎤
⎦ . (6)

Usually, in order to avoid unlucky splittings, M̂n(F) is computed for ≈ 30
different splittings though, rigorously speaking, one split is sufficient [2, 19].

4 Bit–based F and M̂n(F): discussion and perspectives

The purpose of this section is to show that we can drastically reduce the com-
plexity (measured as described in Section 3) of the space defined in Section 2
by varying the different hyperparemeters involved. We will also show that this
reduction does not noticeably affect the capability of the hypothesis space to
learn the functions that will be most likely chosen by the training procedure,
while it deeply (and positively) affects the generalization ability of the learned
function since the complexity of the space is drastically reduced [1, 13, 3].

The exploited Dn is characterized by n = 30, d = 3 and the distribution is a
multivariate Gaussian distribution where the information (allowing to separate
the two classes) is only embedded in the first and the second dimension. We
also exploit a set D′

n′ with n′ = 10, originated from the same distribution. We
build 30 replicates of this dataset in order to obtain statistical relevant results.

1Note that, in principle, κ = 0 and ζ = 0 could be admissible: in any case, we avoid
considering these combinations as they lead to degenerate solutions.

470

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.



κ = 1 κ = 2 κ = 3 κ = 4 κ = 5 κ = 6 κ = 7 κ = 8, . . . ,∞
ζ = 3, Ê 7.9 ± 2.0 4.6 ± 1.5 3.6 ± 1.3 3.2 ± 1.2 3.0 ± 1.2 3.0 ± 1.2 3.0 ± 1.2 3.0 ± 1.2

ε = 10 M̂ 30.0 ± 3.5 41.3 ± 2.9 47.8 ± 2.6 49.8 ± 2.8 51.1 ± 2.9 51.6 ± 2.8 51.6 ± 2.8 51.6 ± 2.8

ζ = 3, Ê 7.9 ± 2.0 4.6 ± 1.5 3.6 ± 1.3 3.2 ± 1.2 3.0 ± 1.2 3.0 ± 1.2 3.0 ± 1.2 3.0 ± 1.2

ε = 7 M̂ 28.7 ± 3.4 41.3 ± 2.9 47.1 ± 2.6 49.3 ± 2.8 50.9 ± 2.7 51.6 ± 2.8 51.6 ± 2.8 51.6 ± 2.8

ζ = 3, Ê 7.9 ± 2.0 4.6 ± 1.5 3.6 ± 1.3 3.2 ± 1.2 3.0 ± 1.2 3.0 ± 1.2 3.0 ± 1.2 3.0 ± 1.2

ε = 5 M̂ 26.7 ± 3.8 40.7 ± 2.8 45.6 ± 2.2 48.0 ± 2.6 50.0 ± 2.4 50.7 ± 2.3 50.7 ± 2.3 50.7 ± 2.3

ζ = 3, Ê 7.9 ± 2.0 4.8 ± 1.5 3.6 ± 1.3 3.2 ± 1.2 3.0 ± 1.2 3.0 ± 1.2 3.0 ± 1.2 3.0 ± 1.2

ε = 3 M̂ 16.7 ± 3.0 34.0 ± 3.0 40.4 ± 2.8 43.6 ± 3.1 45.1 ± 3.0 45.8 ± 3.1 47.8 ± 3.6 47.8 ± 3.6

ζ = 2, Ê 7.9 ± 2.0 6.0 ± 1.5 4.4 ± 1.4 3.9 ± 1.2 3.7 ± 1.2 3.7 ± 1.2 3.7 ± 1.2 3.7 ± 1.2

ε = 10 M̂ 27.8 ± 3.5 37.8 ± 3.2 43.3 ± 3.0 46.2 ± 3.1 46.7 ± 3.2 47.3 ± 3.2 47.3 ± 3.2 47.3 ± 3.2

ζ = 2, Ê 7.9 ± 2.0 6.0 ± 1.5 4.4 ± 1.4 3.9 ± 1.2 3.7 ± 1.2 3.7 ± 1.2 3.7 ± 1.2 3.7 ± 1.2

ε = 7 M̂ 25.8 ± 3.5 37.1 ± 3.1 42.9 ± 2.9 45.8 ± 3.0 46.4 ± 3.0 46.9 ± 3.4 46.9 ± 3.4 46.9 ± 3.4

ζ = 2, Ê 7.9 ± 2.0 6.0 ± 1.5 4.4 ± 1.4 3.9 ± 1.2 3.7 ± 1.2 3.7 ± 1.2 3.7 ± 1.2 3.7 ± 1.2

ε = 5 M̂ 24.2 ± 3.9 35.8 ± 2.7 41.6 ± 2.6 44.2 ± 2.7 44.9 ± 2.7 45.1 ± 2.8 45.1 ± 2.8 45.1 ± 2.8

ζ = 2, Ê 7.9 ± 2.0 6.3 ± 1.5 4.4 ± 1.4 3.9 ± 1.2 3.7 ± 1.2 3.7 ± 1.2 3.7 ± 1.2 3.7 ± 1.2

ε = 3 M̂ 15.8 ± 3.4 29.3 ± 3.0 35.6 ± 3.2 39.8 ± 3.2 40.2 ± 3.2 40.2 ± 3.2 40.4 ± 3.2 40.4 ± 3.2

ζ = 1, Ê 43.6 ± 2.0 12.7 ± 1.7 9.7 ± 1.4 8.2 ± 1.5 7.4 ± 1.4 7.3 ± 1.3 7.2 ± 1.3 7.2 ± 1.3

ε = 10 M̂ 14.7 ± 3.2 28.9 ± 3.7 34.4 ± 3.2 35.8 ± 3.6 37.3 ± 3.4 38.0 ± 3.6 39.8 ± 4.5 38.0 ± 3.6

ζ = 1, Ê 43.6 ± 2.0 12.7 ± 1.7 9.7 ± 1.4 8.2 ± 1.5 7.4 ± 1.4 7.2 ± 1.3 7.1 ± 1.2 7.1 ± 1.2

ε = 7 M̂ 14.7 ± 3.2 28.0 ± 3.6 34.0 ± 3.2 35.1 ± 3.5 36.2 ± 3.4 38.4 ± 5.1 37.8 ± 4.2 36.4 ± 3.4

ζ = 1, Ê 48.2 ± 3.0 12.7 ± 1.7 9.7 ± 1.4 8.2 ± 1.5 7.4 ± 1.4 7.2 ± 1.3 7.1 ± 1.2 7.2 ± 1.3

ε = 5 M̂ 5.3 ± 6.0 24.0 ± 3.4 30.2 ± 3.0 33.1 ± 2.8 34.4 ± 2.9 34.7 ± 2.7 34.7 ± 2.7 34.7 ± 2.7

ζ = 1, Ê – 14.4 ± 1.9 10.1 ± 1.5 8.8 ± 1.5 7.9 ± 1.5 7.7 ± 1.4 7.6 ± 1.4 7.7 ± 1.4

ε = 3 M̂ – 18.9 ± 4.5 23.3 ± 4.2 26.2 ± 4.1 27.3 ± 4.0 27.6 ± 3.9 27.8 ± 3.8 27.8 ± 3.8

Table 1: Results obtained on the case study. All values are in percentage.
Fields including ‘–’ symbol mean that no solutions can be identified for that
combination of hyperparameters.

In Table 1 the minimum error on the training set Ê and the complexity of the
space M̂ are reported by varying the hyperparameters in Problem (5), where we
set θ = 10−3,Θ = 102 (a more deepened sensitivity analysis for these parameters
is not included in this work because of space constraints). In order to fairly
compare the results we use always the same spilt when we compute M̂. It is
worth noting that we can remarkably reduce the complexity of the space without
losing the possibility of representing the functions that are characterized by good
performance on the training set (as underlined in [13, 3]): these functions will
be most likely chosen by the learning process and, then, there seem to be no
reasons to search for more complex spaces. Moreover, note that few bits are
required in order to represents these functions, thus contemplating the whole R

space leads appears to be unmotivated by practical needs [8]. The influence of a
sparse representation and of local hypothesis spaces over the complexity of the
space itself opens rooms for further investigations, that deserve to be performed
in future works.

Broadly speaking, the approach is theoretically sound. In the SRM frame-
work we have to search for the simplest hypothesis space (before looking at
the training set [1]) that guaranties the best trade off between accuracy on the
training set and complexity of the space. Then the introduction of a bit–based
hypothesis space is also encouraged by the basic ML idea to search for the sim-
plest class of functions capable of solving the problem under examination.

As a final remark, an interesting perspective consists in adapting this ap-
proach to the conventional Support Vector Machine formulation in order to
apply these concepts to more realistic scenarios as well as to better understand
the influence of a bit-based class of functions on generalization capabilities of
SVM classifiers.
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