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Abstract. We have developed a prognostic index model for survival data
based on an ensemble of artificial neural networks that optimizes directly
on the concordance index. Approximations of the c-index are avoided with
the use of a genetic algorithm, which does not require gradient information.
The model is compared with Cox proportional hazards (COX) and three
support vector machine (SVM) models by Van Belle et al. [10] on two
clinical data sets, and only with COX on one artificial data set. Results
indicate comparable performance to COX and SVM models on clinical
data and superior performance compared to COX on non-linear data.

1 Introduction

In this paper we focus on models for survival analysis, designed to produce a
prognostic index with the purpose of ordering data according to event times
or dividing data into high and low risk groups. We use the concordance index
(c-index) [1] to measure the performance of the survival models.

The proposed model directly optimizes the c-index and is based on ensembles
of artificial neural networks (ANNs). Many machine learning techniques use
gradients during training, and are therefore ill suited to maximize the rank-based
c-index. Yan et al. [2] overcame this by introducing a smooth approximation to
the step function. Van Belle et al. [3] have developed support vector machines
(SVMs) for survival analysis, including c-index optimization. Another approach
can be found by Raykar et al. [4] where bounds were derived for the c-index and
used in the optimization. Our approach is to optimize on the c-index using a
genetic algorithm, which does not require the computation of any gradients.

A similar model was introduced by us in [5] and in this study we have further
developed the ensemble generation procedure and selection of optimal parame-
ters. The purpose of this study is to evaluate our model on a selection of survival
data sets and compare with other models.

2 Methods

To compare the performance of our model with existing results, we used clinical
data sets from the study of Van Belle et al. [10]. A non-linear artificial data set
was also used to illustrate the capabilities of the model and to compare with
Cox proportional hazards (COX).

333

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.



2.1 Clinical data

We used two publicly available clinical data sets1. The first one is the veteran’s
administration lung cancer trial (VLC) [8], a randomized trial of two treatment
regimens for lung cancer, consisting of 137 patients where only 9 were alive at
the end of the study. Information about treatment type, Karnofsky performance
score, time from diagnosis to randomization, age, prior therapy and tumor his-
tology is available.

The second data set originates from the North Central Cancer Treatment
Group (NCCTG) [9]. This data set consists of 228 lung cancer patients where 63
were censored. Available information consists of age, sex, ECOG performance
score, Karnofsky score rated by physician and patient, calories consumed at
meals and weight loss in last six months. Van Belle et al. [10] also used these
two data sets, but in the case of NCCTG only the uncensored cases were used.
For comparative reasons, we also trained our model on this subset (denoted MLC
as in [10]).

For all data sets, a training set of 2/3 and a test set of 1/3 stratified for
censoring was used.

2.2 Artificial data

This data set (AD) is constructed in a way which makes it impossible to solve
by a linear model. The data is highly non-monotonic and the expected result
for a model such as COX is not better than random. 1000 training and 2000
test cases were generated using 10 covariates. Half of the data was censored and
noise was uniformly added to both the covariates and the survival time. See [5]
for further details.

2.3 The concordance index

To define the c-index we introduce the survival time tj for patient j. In the case
of a censored patient, tj is the follow-up time.

A pair of patients are said to be useable if the patient with the shorter time is
un-censored. Let pj be the prognostic index for patient j, with the aim of sorting
patients according to actual survival times. A useable pair is in concordance if
the sample with shorter time t has a higher index p.

The c-index is simply the fraction of useable pairs in concordance. Thus, a
c-index of 1.0 indicates a perfect ordering and a value of 0.5 is no better than
random ordering.

1Both available in the survival package in the R-environment (last accessed 2012-12-05):
http://cran.r-project.org/web/packages/survival/index.html
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2.4 The prognostic index model

We model the prognostic index p(x) using a multilayer perceptron with one
hidden layer,

p(x) =

J∑
j=1

ωj · ϕ
(

K∑
k=1

ω̃jkxk + ω̃j0

)
+ ω0,

given set of K covariates xi = (xi1, xi2, . . . , xiK) for each patient i. A large
index will indicate a high risk of an event. The activation function ϕ() is here
set to the hyperbolic tangent function tanh(). This model can easily become
linear by setting J = 1 and ϕ(x) = x.

The weights (ωj , ω̃jk) are determined by minimizing an objective function.
In our case the objective function is the c-index, which is not differentiable with
respect to the weights, thereby limiting the number of minimization methods
one can use.

2.5 Training using genetic algorithms

We have chosen to utilize a genetic algorithm which allows us to train directly
on the c-index without requiring gradient information. Many possible imple-
mentations of genetic algorithms exist. The implementation used in this study
is based on Montana and Davis [6].

Initialization of the population Npop number of ANNs, are initialized with ran-
dom weights from the exponential distribution

p(ω) =
2

σ
exp

(
−|ω|

σ

)
, (1)

thus favoring smaller weights while allowing for larger weights in some cases.
Appropriate values for both Npop and σ are tuned before final training.

Creation of a new generation New ANNs are created by crossover where the
child ANN inherits each weight randomly from one of its two parents. An ANN
with rank k, when sorted by performance, is selected as parent with the proba-
bility p(k) ∝ (0.95)k−1. This results in a 90% probability to select a rank of 45
or less for a population of 100. In the mutation step, each weight ω is modified
with probability Pµ according to ω = ω + Δω where Δω is a random number
from the distribution in equation 1, where σ gradually decreases, as described
below.

The child ANN is now evaluated and inserted into the population. Then,
the ANN with the worst rank is deleted, thereby keeping the population size
constant. A generation has elapsed when the number of generated children
equals the population size.

The width of Δω decreases over time as σ decreases linearly with each gener-
ation. σ reaches half its starting value at generation γhalf which, together with
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the mutation probability Pµ and number of generations, are tuned before the
final training.

2.6 Ensembles of prognostic models

To decrease the problem of over-fitting and thereby possibly increase the gen-
eralization performance, an ensemble approach using Bagging [7] was employed
for the prognostic index model. The bagging process was additionally stratified
for censoring.

With a rank-based objective function, the ensemble result cannot be gener-
ated by direct averaging of individual member outputs since they can be expected
to differ wildly between ANNs, even if they are equivalent in terms of the c-index.
To be able to average outputs, they will first be transformed into ranks. Let Ni

Fig. 1: A new patient x obtains a rank number Ri(x) for each ANN i by com-
paring with the training data output list for each ANN.

be the number of training data that was used to train ensemble member i. The
output yi(x) for ANN i and patient x will give rise to a rank Ri(x). This rank
is determined by inserting the output yi(x) into the sorted list of training data
outputs for ANN i. The rank Ri(x) is the position of yi(x) in the sorted list (see
Fig. 1). To allow for ANNs trained with different sizes of training sets, the rank
is divided by Ni +1, yielding a number between 0 and 1 called the normalized
relative rank R̃i(x). From a c-index point of view, ANN output yi(x) and
R̃i(x) are completely equivalent. Computing an ensemble output yc(x) is now
straightforward and is the average of normalized relative ranks,

yc(x) =
1

M

M∑
i=1

R̃i(x) (2)

where M is the size of the ensemble.

3 Results

The parameters for the genetic algorithm (see Table 1) were tuned to maximize
the training performance over 10 runs, for each evaluated parameter value. The
number of hidden nodes however, was selected based on 5x3-fold cross-validation
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on the training set to avoid possible over-fitting. Cross-validation was also used
to establish a suitable ensemble size and resulted in 30 ANNs for all cases. This
model selection was done for all data sets and the parameters selected in each
case are presented in Table 1.

Table 1: Number of hidden nodes was selected using 5x3-fold cross-validation
on the training set. The other parameters were tuned to maximize training
performance.

Data set #Hidden Npop Pµ σ γhalf Generations
VLC 1 100 0.8 0.4 100 200
MLC 2 100 1.0 0.5 100 200
NCCTG 3 100 1.0 0.4 100 200
AD 14 100 0.4 0.25 100 200

The test results presented in Table 2 were based on 1000 bootstraps of the
test set, for each individual data set. The statistical significance of the ANN
results compared to the COX results was calculated using the Wilcoxon rank
sum test.

Table 2: Median c-index for all models on the data sets. ANN and COX are
based on 1000 bootstraps of the test set. P-values for the difference between
ANN and COX results were calculated using the Wilcoxon rank sum test and
resulted in p < 0.005 for all comparisons. The other models are, as reported in
[10], based on 50 randomizations of the training and test sets.

Model VLC MLC NCCTG AD

ANN 0.65± 0.05 0.61± 0.04 0.63± 0.04 0.90± 0.00
COX 0.64± 0.04 0.59± 0.04 0.62± 0.04 0.50± 0.01
Results reported in [10] for comparison
MODEL 1 0.61± 0.07 0.60± 0.05
MODEL 2 0.69± 0.03 0.62± 0.05
RANKSVMC 0.62± 0.08 0.59± 0.05
PHlinear 0.68± 0.03 0.61± 0.04

Also presented in Table 2 are the results reported by Van Belle et al. [10]
for the SVM models. They used a slightly different methodology and their
results are based on 50 randomizations between training and test sets. A slight
discrepancy in results can thus be expected and to illustrate this we also include
the result for Cox proportional hazards as reported by them (PHlinear).

4 Discussion & Conclusions

We have developed a prognostic index model for survival data based on an
ensemble of ANNs that optimizes directly on the c-index.
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Compared to the COX model we found a small but significant advantage for
our ensemble based ANN model. The comparison with the three SVM models
presented by Van Belle et al. [10] showed similar performance. The differences
found can possibly be attributed to the different testing methodologies used,
as indicted by the different results found for the equivalent models COX and
PHlinear. The ANN model has major advantages over COX in the case of non-
linear data.

Training directly on the c-index has the potential to introduce a bias; due
to the bias of the c-index itself to overestimate model performance on censored
data. This can be seen if one compares the results for MLC and NCCTG, which
are the same data sets except MLC contains only the non-censored cases. The
improvement on NCCTG could potentially be an overestimation of performance
due to additional censored cases. This is however a problem that all models that
are evaluated using the c-index are affected by. An advantage of our model is
that it can be trained on any performance metric, not just the c-index.
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