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Abstract. One of the unsolved problems of the application of cortical
stimulation for therapeutic means is the selection of optimal stimulation
parameters. Using support vector regression, we demonstrate that the
intensity of single pulse electrical stimulation can be decoded from the
waveform of the evoked electrocorticographic (ECoG) activity, even if in-
tensities used for training and testing of the regression model are disjoint.
This was most effective when stimulation was applied directly over the mo-
tor cortex, less so for premotor and sensory cortex. Thus, if the optimal
shape of the evoked neural response to stimulation is known, a regression
model trained on the responses to a small set of stimulation intensities
could be sufficient to determine the optimal stimulation intensity.

1 Introduction

Cortical stimulation is a means of treating for example epilepsy, central pain
[1] or movement disorders [2]. While these treatments seem to be beneficial for
many patients, the exact mechanisms why they work are not fully understood.
In particular, the question of how to select optimal stimulation parameters is
unanswered [3]. One approach for optimization could be to use the stimulation-
evoked neural response as a target by first determining the shape of the response
most beneficial for the treatment of the patient. Secondly, one would need to
find stimulation parameters best suited to evoke this target waveform.
We investigated in this work the second part of this parameter-selection prob-
lem. We conducted experiments with 2 chronic stroke patients with implanted
epidural electrocorticography (ECoG) electrodes who participated in a study on
the use of brain-computer interfaces and cortical stimulation for stroke reha-
bilitation [4]. Using support vector regression (SVR), models were trained to
decode the stimulation intensity from the evoked neural responses for a small
set of intensities. The models were validated by applying them to the waveforms
evoked from intensities not used during training, thus treating them as possible
target waveforms.
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Fig. 1: ECoG electrode positions for P1 and P2. Electrodes are roughly grouped
by cortical areas: somatosensory cortex (S1), primary motor cortex (M1) and
premotor cortex (PMC). The location of electrodes used at least in one session
for stimulation are marked as black circles, electrodes used only for recording
as white circles. Right: Zoom on the electrode positions. Arrow: position of
channel 10 shown in figure 2.

2 Methods

2.1 Patients

Two chronic stroke patients (both male, ages 52 (P1) and 56 (P2), 80 and 159
months after a stroke in the right hemisphere) participated in this study. None
of the patients was able to produce voluntary movements of the left hand. The
patients were implanted with 16 epidural electrodes with a diameter of 4 mm.
These electrodes were arranged in a 4x4 grid (see figure 1), centered on the hand
area of the right motor cortex as identified by pre-surgical evaluation of TMS
mappings and intraoperative cortical stimulation and covered parts of premotor
and sensory areas as well. All procedures were approved by the local ethics
committee of the faculty of medicine of the university hospital in Tübingen.

2.2 Experimental setup

The patients were lying in bed throughout the experiment with open eyes. We
conducted 2 sessions with patient P1 and 3 with P2. In each session, 3 elec-
trodes were used for the delivery of single pulse stimulation, one located on the
somatosensory, one on the primary motor and one on the premotor cortex. All
other electrodes were used to record the evoked neural responses.

2.2.1 ECoG recording

We recorded the ECoG signals with a monopolar amplifier (BrainAmp MR plus,
BrainProducts, Munich, Germany) with a sampling rate of 5000 Hz and a built-
in low-pass filter at 1000 Hz. No high-pass filter was used to ensure that hardware
filters do not interfere with the shape of the stimulation artefact and the evoked
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neural potentials. The signal was monitored and the built-in DC-correction of
the amplifier was used if the recorded signal threatened to exceed the operating
range of the amplifier (± 3.27 mV). The ECoG data was referenced to the
electrode at the fronto-medial corner of the grid.

2.2.2 Electrical stimulation

For epidural stimulation we used monopolar biphasic symmetric pulses with a
length of 500 μs that were applied to one electrode on the grid with a STG4008
stimulus generator (MultiChannel Systems, Reutlingen, Germany) with a 50x90
mm adhesive electrode placed under the left clavicle of the patient acting as
the antipole. This electrode also served as the ground electrode for recording.
Stimulation intensities were varied in steps of 1 mA between 1 and 8 mA for
P1 and the first session of P2 and between 5 and 12 mA for the second and
third session of P2. The highest intensities per patient were sufficient to evoke
small muscle twitches in the paralyzed left hand of P1 and sometimes P2 when
stimulating over M1. We applied anodal pulses in the first sessions of both
patients and the third session of P2 and cathodal pulses in the second sessions.
Per session, 100 pulses were given for each intensity in randomized order, in total
800 pulses. The inter-stimulus interval was set to 1 second.

2.3 Feature extraction

Channels with excessively long (> 20 ms) and pronounced stimulation artifacts
were removed from further analysis. A bandpass filter (cutoff: 5 and 500 Hz)
and a notch filter at 50 Hz were applied anti-causally to the data to avoid
contamination of the evoked response with the stimulation artifact. The time
window between 5 and 155 ms after each stimulation pulse (figure 2) was ex-
tracted and divided in 30 bins of length 5 ms to capture the shape of the early
evoked response. A semi-automatic trial rejection using the variance of the post-
stimulation data was employed to remove trials with channel-specific artifacts,
amplifier saturation or artefacts of the DC correction.

2.4 Support vector regression (SVR)

For each recording channel, SVR was used to infer the applied stimulation in-
tensity from the 30 bins of the poststimulus activity. SVR is a method for
sparse regression based on support vector machines. Following Brugger et al.
[5], the regression model g(x) =

∑m
i=1 βik(x, xi)+ b for a set of training patterns

{(xi, yi)}mi=1 ∈ R
d × R for primal SVR is found by

min
β,b

(
Lε(β,b) =

1

2

n∑
i=1

lε(Kiβ + b− yi) +
λ

2
βTKβ

)

where lε is the ε-insensitive loss function, k is the kernel function, Ki the i-th
row of the kernel matrix K, β are the coefficients in the solution, b is the bias
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Fig. 2: Evoked activity on channel 10 (arrow in figure 1) after anodal pulses
were applied to the motor cortex of P1. Colored lines: Single trials color-coded
by intensity. Black solid lines: Mean evoked activity per intensity.

term and λ = 1
C is the regularization parameter. This SVR implementation

was used because it yielded better results for this problem than the libSVM
SVR implementation [6]. We used an RBF kernel and employed span bound
optimization [7] to determine C, the width ε of the loss function and the kernel
parameter σ.
For P1, the SVR was trained on the trials with intensities of 1, 3, 5 and 8 mA for
training and tested on 2, 4, 6 and 7 mA. This was also done for the first session
of P2, whereas for the second and third session, 5, 7, 9 and 12 mA were used
for training and 6, 8, 10 and 11 mA for testing. The size of the training and the
test set was 365.6± 47.4 and 365.9± 45.9 instances, respectively (mean ± std).
The quality of the intensity decoding was quantified with the root mean squared
error (RMSE) and the squared correlation coefficient r2 between the decoded
and the actual intensities. Models with an RMSE smaller than our step size of
1 mA were considered to be successful.

3 Results

The dependency of evoked responses on stimulation intensity can be seen in
figure 2, demonstrating that there is a non-linear relationship between the am-
plitude of the evoked activity and the intensity. For the depicted channel, the
strongest differences are found in the first 50 ms after the stimulus. We tested
whether this dependency can be captured by a regression model by training the
SVR only on half of the intensities and testing it on the remaining half. We
found that the specificity of the differences between intensities depends on the
position of the recording channel in relation to the stimulation channel. For
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Fig. 3: Results for session 1 of P1, stimulation over M1. Spatial interpolation
of RMSE (A) and r2 (B) with sulci denoted by black lines. The stimulation
electrode is marked by a black, recording electrodes by open circles. Dotted
electrodes were excluded from the analysis. C: Results for the channel with
lowest RMSE (arrow in B). Boxes encompass the 25th-75th percentile, whiskers
extend up to 1.5 times the interquartile range. Plus signs denote outliers.

the example in figure 3, after stimulation on M1, the smallest error is found for
the channels on the somatosensory cortex and the channels on the motor cortex
medial to the stimulation electrode. For many of these channels, such as the
example given in figure 3 C, the RMSE is smaller than the intensity step size of
1 mA, indicating a very good separability of the evoked responses for different
intensities. Table 1 lists the average RMSE and r2 for all channels grouped by
their position (M1, S1 or PMC). When stimulating on S1 for P1, no recording
was possible on the other channels on S1 due to strong stimulation artifacts.

4 Discussion and Conclusion

For patient P1, the results are in general better than for P2. Interestingly,
stimulation on PMC is decoded worse on S1 than vice versa, indicating that
either S1 is better excitable than PMC or that the stimulus itself is relayed
better from somatosensory cortex towards premotor areas. For patient P2 it is
clear that the intensity can be best decoded from stimuli applied to the motor
cortex, where in all sessions and in all recording areas average r2 > 0.5 are
reached. For stimulation on the other brain areas, no meaningful decoding was
achieved. This might be due to the cortical lesion in the sensorimotor area
of P2 within the electrode grid (figure 1) which possibly disrupts the effective
transmission of the stimulation to other brain areas.
In conclusion we have found that, depending on the position of the recording and
stimulating electrodes, using SVR, a regression model can be constructed that
generalizes from the evoked response of a few training intensities well enough
to find the proper parameter setting for responses from novel intensities. Thus,
a rough sampling of the range of intensities could be enough to predict the
intensity best suited to evoke the target evoked response. Although this analysis
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Session Stim
Recording area

S1 M1 PMC

RMSE r2 RMSE r2 RMSE r2

P1

1
S1 0.65 0.91 0.88 0.82
M1 0.79 0.92 0.77 0.88 1.24 0.69
PMC 2.06 0.00 1.36 0.49 0.69 0.88

2
S1 0.74 0.90 1.20 0.66
M1 0.89 0.91 0.84 0.82 1.08 0.75
PMC 1.52 0.39 0.90 0.77 0.64 0.91

P2

1
S1 2.02 0.02 1.77 0.20 1.83 0.07
M1 1.55 0.43 1.32 0.48 0.80 0.83
PMC 2.00 0.01 2.04 0.00 2.16 0.02

2
S1 1.92 0.10 2.02 0.02 2.06 0.01
M1 1.23 0.58 0.77 0.85 0.95 0.79
PMC 2.03 0.04 1.95 0.10 1.72 0.26

3
S1 2.00 0.04 1.83 0.16 1.82 0.19
M1 1.16 0.66 1.26 0.58 1.35 0.56
PMC 2.03 0.03 1.99 0.05 1.65 0.27

Table 1: Average RMSE and r2 over all channels recording from M1, S1 or PMC
for different positions of the stimulation electrode (Stim).

was performed on a single channel basis, it would be straightforward to extend
it to multichannel data by using the concatenated evoked activities of the single
channels as input to the regression model. The use of specialized spatial filters in
data preprocessing could improve the decoding performance further by directly
extracting the spatiotemporal patterns most sensitive to changes in stimulation
intensity.
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