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2- Universitat Politècnica de Catalunya - CETpD
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Abstract.

Human-centered computing is an emerging research field that aims to understand
human behavior and integrate users and their social context with computer systems.
One of the most recent, challenging and appealing applications in this framework
consists in sensing human body motion using smartphones to gather context infor-
mation about people actions. In this context, we describe in this work an Activity
Recognition database, built from the recordings of 30 subjects doing Activities of
Daily Living (ADL) while carrying a waist-mounted smartphone with embedded
inertial sensors, which is released to public domain on a well-known on-line repos-
itory. Results, obtained on the dataset by exploiting a multiclass Support Vector
Machine (SVM), are also acknowledged.

1 Introduction

Human Activity Recognition (HAR) aims to identify the actions carried out by a person
given a set of observations of him/herself and the surrounding environment. Recogni-
tion can be accomplished by exploiting the information retrieved from various sources
such as environmental [1] or body-worn sensors [2, 3]. Some approaches have adapted
dedicated motion sensors in different body parts such as the waist, wrist, chest and
thighs achieving good classification performance [4]. These sensors are usually un-
comfortable for the common user and do not provide a long-term solution for activity
monitoring (e.g. sensor repositioning after dressing [5]).

Smartphones are bringing up new research opportunities for human-centered ap-
plications where the user is a rich source of context information and the phone is the
firsthand sensing tool. Latest devices come with embedded built-in sensors such as
microphones, dual cameras, accelerometers, gyroscopes, etc. The use of smartphones
with inertial sensors is an alternative solution for HAR. These mass-marketed devices
provide a flexible, affordable and self-contained solution to automatically and unobtru-
sively monitor Activities of Daily Living (ADL) while also providing telephony ser-
vices. Consequently, in the last few years, some works aiming to understand human
behavior using smartphones have been proposed: for instance in [6], one of the first
approaches to exploit an Android smartphone for HAR employing its embedded triax-
ial accelerometers; additional results have also been presented in [7, 8]. Improvements
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No. Static Time (sec) No. Dynamic Time (sec)
0 Start (Standing Pos) 0 7 Walk (1) 15
1 Stand (1) 15 8 Walk (2) 15
2 Sit (1) 15 9 Walk Downstairs (1) 12
3 Stand (2) 15 10 Walk Upstairs (2) 12
4 Lay Down (1) 15 11 Walk Downstairs (1) 12
5 Sit (2) 15 12 Walk Upstairs (2) 12
6 Lay Down (2) 15 13 Walk Downstairs (3) 12

14 Walk Upstairs (3) 12
15 Stop 0

Total 192

Table 1: Protocol of activities for the HAR Experiment.

are still expected in topics such as in multi-sensor fusion for better HAR classifica-
tion, standardizing performance evaluation metrics [9], and providing public data for
evaluation.

In the HAR research framework, some datasets have been released to the public do-
main: the one of the Opportunity Project [10] is an example which has recorded a set of
ADL in a sensor rich environment using 72 environmental and body sensors. Similarly,
other works have provided public data, such as [11] and [12]. Publicly available datasets
provide a freely available source of data across different disciplines and researchers in
the field. For this reason, we present a new dataset that has been created using inertial
data from smartphone accelerometers and gyroscopes, targeting the recognition of six
different human activities. Some results, obtained by exploiting a multi class Support
Vector Machine (SVM) classifier [13], are shown as well.

2 Methodology

A set of experiments were carried out to obtain the HAR dataset. A group of 30 vol-
unteers with ages ranging from 19 to 48 years were selected for this task. Each person
was instructed to follow a protocol of activities while wearing a waist-mounted Sam-
sung Galaxy S II smartphone. The six selected ADL were standing, sitting, laying
down, walking, walking downstairs and upstairs. Each subject performed the protocol
twice: on the first trial the smartphone was fixed on the left side of the belt and on the
second it was placed by the user himself as preferred. There is also a separation of 5
seconds between each task where individuals are told to rest, this facilitated repeata-
bility (every activity is at least tried twice) and ground trough generation through the
visual interface. The tasks were performed in laboratory conditions but volunteers were
asked to perform freely the sequence of activities for a more naturalistic dataset. Table
1 shows experiment protocol details.

2.1 Signal Processing

We collected triaxial linear acceleration and angular velocity signals using the phone
accelerometer and gyroscope at a sampling rate of 50Hz. These signals were pre-
processed for noise reduction with a median filter and a 3rd order low-pass Butter-
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Name Time Freq.
Body Acc 1 1
Gravity Acc 1 0
Body Acc Jerk 1 1
Body Angular Speed 1 1
Body Angular Acc 1 0
Body Acc Magnitude 1 1
Gravity Acc Mag 1 0
Body Acc Jerk Mag 1 1
Body Angular Speed Mag 1 1
Body Angular Acc Mag 1 1

Table 2: Time and frequency domain signals obtained from the smartphone sensors.

worth filter with a 20 Hz cutoff frequency. This rate is sufficient for capturing human
body motion since 99% of its energy is contained below 15Hz [3]. The acceleration
signal, which has gravitational and body motion components, was separated using an-
other Butterworth low-pass filter into body acceleration and gravity. The gravitational
force is assumed to have only low frequency components, therefore we found from the
experiments that 0.3 Hz was an optimal corner frequency for a constant gravity signal.

Additional time signals were obtained by calculating from the triaxial signals the
euclidean magnitude and time derivatives (jerk da/dt and angular acceleration dw/dt).
The time signals were then sampled in fixed-width sliding windows of 2.56 sec and
50% overlap between them, since:

• The cadence of an average person walking is within [90, 130] steps/min [14], i.e.
a minimum of 1.5 steps/sec;

• At least a full walking cycle (two steps) is preferred on each window sample;

• People with slower cadence such as elderly and disabled should also benefit from
this method. We supposed a minimum speed equal to 50% of average human
cadence;

• Signals are also mapped in the frequency domain through a Fast Fourier Trans-
form (FFT), optimized for power of two vectors (2.56sec × 50Hz = 128cycles).

Thus, a total of 17 signals were obtained with this method, which are listed in Table 2.

2.2 Feature Mapping

From each sampled window described above a vector of features was obtained. Stan-
dard measures previously used in HAR literature [15] such as the mean, correlation,
signal magnitude area (SMA) and autoregression coefficients [16] were employed for
the feature mapping. A new set of features was also employed in order to improve the
learning performance, including energy of different frequency bands, frequency skew-
ness, and angle between vectors (e.g. mean body acceleration and y vector). Table 3
contains the list of all the measures applied to the time and frequency domain signals.

A total of 561 features were extracted to describe each activity window. In order to
ease the performance assessment, the dataset has been also randomly partitioned into
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Function Description
mean Mean value
std Standard deviation
mad Median absolute value
max Largest values in array
min Smallest value in array
sma Signal magnitude area
energy Average sum of the squares
iqr Interquartile range
entropy Signal Entropy
arCoeff Autorregresion coefficients
correlation Correlation coefficient
maxFreqInd Largest frequency component
meanFreq Frequency signal weighted average
skewness Frequency signal Skewness
kurtosis Frequency signal Kurtosis
energyBand Energy of a frequency interval
angle Angle between two vectors

Table 3: List of measures for computing feature vectors.

two independent sets, where 70% of the data were selected for training and the remain-
ing 30% for testing. The Human Activity Recognition dataset has been made available
for public use and it is presented as raw inertial sensors signals and also as feature vec-
tors for each pattern. It has been submitted as the Human Activity Recognition using
Smartphones dataset in the UCI Machine Learning Repository [17] and can be accessed
following this link (information concerning the licensing and usage of the data can be
retrieved in the readme file included):

archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

3 Experimental results

We conducted some experiments on the HAR dataset to acknowledge future users with
some results. For this purpose, we exploit well-known and state-of-the-art Support
Vector Machine (SVM) [13] binary classifiers, which are generalized to the multiclass
case through a One-Vs-All (OVA) approach: the SVM hyperparameters are selected
through a 10-fold Cross Validation procedure and Gaussian kernels are used for our
experiments.

The classification results using the multiclass SVM (MC-SVM) for the 6 ADL are
presented in Table 4. They show an overall accuracy of 96% for the test data composed
of 2947 patterns. Similar work on HAR using special purpose sensors have shown
comparable performance (90%-96%), such as in [3] where a system developed by col-
lecting data from 6 volunteers for the classifaciton of 12 ADL using a waist-mounted
triaxial accelerometer provided an accuracy of 90.8%, and similarly in [18] where a
chest-mounted accelerometer was used for classifying 5 ADL obtained a recognition
performance of 93.9%. This allows to argue that the use of smartphones, in addition to
be more unobtrusive and less invasive than other special purpose solutions (e.g. wear-
able sensors), is a feasible way to walk for effectively performing HAR. It is also worth
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WK WU WD ST SD LD Recall
Walking 492 1 3 0 0 0 99%
W. Upstairs 18 451 2 0 0 0 96%
W. Downstairs 4 6 410 0 0 0 98%
Sitting 0 2 0 432 57 0 88%
Standing 0 0 0 14 518 0 97%
Laying Down 0 0 0 0 0 537 100%
Precision 96% 98% 99% 97% 90% 100% 96%

Table 4: Confusion Matrix of the classification results on the test data using the multi-
class SVM. Rows represent the actual class and columns the predicted class. Activity
names on top are abbreviated.

underlining that the MC-SVM model outperforms by 7% the classifier learned on our
previous dataset described in [19], where only acceleration data from the smartphone
were taken into account for the recognition: this suggests that the new features, in-
troduced in the publicly available dataset as depicted in Section 2.2, allow to ease the
learning process.

The classification performance for each class is also shown in terms of recall and
precision measures, with the sitting activity having lowest recall equal to 88%. In par-
ticular, there is a noticeable misclassification overlap between this activity and standing
attributed to the physical location of the device and its difficulty to categorize them: fu-
ture works will have to investigate the necessary steps in order to improve the discrim-
ination of these non-dynamic activities (e.g. introduction of new features, for example
derived by gyroscopes).

4 Conclusions

In this paper we introduced a new publicly available dataset for HAR using smartphones
and acknowledged some results using a multiclass Support Vector Machine approach.
The multiclass SVM employed for the classification of smartphone inertial data showed
a recognition performance similar to previous work that have used special purpose sen-
sors, therefore strengthening the application of these devices for HAR purposes. We
also highlighted an improvement on the classification performance of the learned model
using this new dataset against the previous version, which had a reduced set of features.

However, rooms for improvements exist: while dynamic activities can be efficiently
classified thanks to the newly introduced features in the released dataset, non-dynamic
actions still present misclassification overlaps. This requires further study of available
inputs and revision of the HAR process pipeline phases. Finally, computational com-
plexity aspects such as battery life and real time processing for the application will be
assessed in our forthcoming works.
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