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Abstract. The curse of dimensionality leads to problems in machine
learning when dealing with high dimensionality. This aspect is partic-
ularly pronounced if intrinsically infinite dimensionality is faced such as
present for spectral or functional data. Feature selection constitutes one
possibility to deal with this problem. Often, it relies on mutual informa-
tion as an evaluation tool for the feature importance, however, it might
be overlaid by intrinsic biases such as a high correlation of neighbored
function values for functional data. In this paper we propose to assess
feature correlations of spectral data by an overlay of prior dependencies
due to the functional nature and its similarity as measured by mutual
information, enabling a quick overall assessment of the relationships be-
tween features. By integrating the Nystrom approximation technique, the
usually time consuming step to compute all pairwise mutual informations
can be reduced to only linear complexity in the number of features.

1 Introduction

Modern technology has made cheap and precise sensors available for a broad
use. This development resulted not only in large amounts of data samples,
but also in an increased complexity of each sample. Very prominent examples
of this observation can be found when considering spectral data such as mass
spectrometry, NMR, or spectra of light. Since the underlying data is given as a
function of wavelength to intensity in the limit, improved sensor technology has
led to samples with multiple thousands of features, in which neighboring features
are usually highly correlated to each other. This observation leads to significant
problems for classical machine learning tasks due to the curse of dimensionality.
One possible way to deal with this problem is to perform feature selection.
Often, feature selection (F'S) relies on a quantitative measure of the usefulness
of the features. Mutual information (MI) constitutes an information theoretic
criterion which has been successfully applied for this task [5]. In the case of
supervised FS, i.e. for labeled data, one can compute the MI between each
feature and the target. Features can then be ranked based on these values
and the top ones can be chosen for further processing. One problem with this
approach is that the top ranked features can be highly correlated with each
other carrying redundant information. Hence, instead of an iterative greedy
selection of single features, it might be advisable to look for the MI between sets
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of features and the target. Unfortunately, there are exponentially many subsets
and the computation becomes infeasible, already basic settings being NP hard
[11]. This gives rise to greedy approaches such as forward search [6].

In the unsupervised case there is the possibility to compute the MI between
all pairs of features and cluster the most similar features into groups [7]. Each
group can then be represented by a single feature, thus reducing the amount of
used features significantly. It was suggested in [8], that this approach might not
be sound for spectral data, where features from different parts of the spectrum
should not be grouped together. Instead, one should regard only consecutive
features by the means of a hierarchical clustering algorithm. Obviously, due
to the functional nature of spectral data, a natural bias towards a grouping of
neighbored bands is given. The question now occurs how this functional group-
ing of features correlates to groupings based on MI, and how feature selection
schemes can be based on this accumulated information.

In this contribution we present a first step in this direction by introducing
an unsupervised visualization technique which allows to assess the relationship
between the features based on their functional nature and pairwise mutual infor-
mation quickly. This offers an interface based on which an expert can then derive
a suitable approach for feature selection and feature grouping. The idea is to
compute the MI between all pairs of features resulting in a quadratic similarity
matrix and to visualize this matrix using e.g. classical multidimensional scaling
(CMDS) [12]. This is overlaid by the spectral ordering, so that one can directly
inspect whether consecutive features are correlated with each other under the
MI criterion. Since the construction of the matrix is quadratic in the number
of features, it might become problematic for high dimensional data. Thus, we
propose to use the Nystrom approximation to reduce the complexity.

Now we first give a short description of MI estimation, based in which the
visualization framework is introduced. Then the Nystrom approximation to
reduce the computational effort is explained, and tested in two experiments.

2 Mutual information

Let X and Y be two random variables and denote jp1x,y the joint probability
density function of X and Y. The marginal density functions are given by
px(x) = [px,y(z,y)dy and py(y) = [ px,y(z,y)dz. The uncertainty on Y
is then given by its entropy H(Y) defined as H(Y) = — [ puy (y)log py (y)dy.
If knowledge on Y is obtained indirectly by knowing X, the uncertainty on Y
knowing X is given by the conditional entropy H(Y|X) defined as

HX) = = [ (@) [ (ol X =) logay (41X = x)dody.
The mutual information I(X,Y’) between X and Y can be considered as a
measure of the amount of knowledge on Y provided by X [10]:
which is exactly the reduction of the uncertainty of ¥ when X is known.
Since estimating the marginal density functions px and py is not trivial

in practical cases, Kraskov et al. in [9] propose to use a k-nearest neighbor
approach to estimate directly the mutual information.
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Assuming metrics are given for each of the spaces spanned by X, Y and using
the maximum norm on Z = (X,Y) (||z — z’Hmax = max {||lx — :L'/H My =113,
then for every point z; = (z;,y;) € Z,1 < i < N, its neighbors can be sorted
according to their distance to the considered pomt Denote then by £7/2 the
distance from the considered point z; to its k-th neighbor and by &;X /2 and ey /2
the distances between z; and its k-th neighbor, but projected in the X and Y
subspaces, respectively denoted x; and ;.

The idea of the first Kraskov estimator I(!) of the mutual information, is
then to count the number niof points whose distance from z; is less than EZ /2,
as well the number n! of pomts whose distance from y; is also less than EZ /2.

Given these, the ﬁrst estimator (M) of the mutual information between ran-
dom variables X and Y proposed by Kraskov is given as

N
IV(X,Y) = Z (i +1) + (i + 1]+ p(N),

where ¢(z) = dIn(T'(z))/dx denotes the digamma function.

The choice of k remains non-trivial, and while Kraskov in [9] proposes the
heuristic of k = 6, it is likely that the choice of the optimal k£ remains application-
specific. For more details the reader is referred to the original article [9].

3 Visualization of spectral feature correlations

Spectral data have a functional form, which is characterized by a real-valued
function ¢ — x(t) mapping wavelengths (or similar such as time or mass) to
intensity. Depending on the resolution of the spectrometric instruments, mea-
surements result in samples (x1,...,2,) for n values of the index parameter t.
Obviously, it is possible to estimate the pairwise MI of these features based on
the Kraskov estimator. In addition, one can assume smoothness of the mapping
t — x(t), such that neighbored features z; and ;41 are likely correlated.

We propose to overlay these two information sources in the following way:
The possibly complex relation of features as measured by MI can be visualized
by referring to the full MI matrix and displaying a low dimensional approxima-
tion by referring to classical (possibly nonlinear) embedding techniques for the
matrix [12]. Here we will use classical multi-dimensional scaling (CMDS). Cor-
relations as induced by functional smoothness follow a linear principle only, such
that its display is easily possible by connecting neighbored features with lines.
One potential problem of this approach consists in the complexity to compute
the Kraskov estimator. Here, approximation techniques such as the Nystrom
technique which reduce the effort to linear time, might be beneficial.

4 Nystrom approximation
The Nystrom approximation is a powerful technique to approximate positive

semi-definite (psd) matrices. It was proposed for kernel methods in machine
learning by [1]. We give a short review. By the Mercer theorem a psd kernel
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k(x,y) can be expanded by orthonormal eigenfunctions ¢; and eigenvalues \;
k(x,y) = Z Aidi(x)¢i(y)- (1)
i=1

The number of non zero eigenvalues can be infinite, but typically, since the ker-
nels are given by a matrix K, it is finite and given by the rank of this matrix. The
eigenequation of a kernel [ k(y,x)¢;(x)p(x)dx = \;¢;(y) defines eigenfunctions
and eigenvalues and can be approximated by sampling xj, from p(x):

m

5 by xe)6iCxe) & Midily).

k=1

This equation together with the matrix eigenproblem KU = y(m) A(m)
of the m x m Gram matrix K™ can be used to derive the approximations:

A Vm, )
Ai & e diy) = kaui ;
where u,gm) is the ith column of U™ . Now we can plug this approximation into

the equation 1, which allows us to compute k(y1,y2), if we know the vectors
ky,, = (k(x1,¥1)s -, k(Xm,y1))" and ky, similarly. This results in the approxi-
mated kernel matrix K = 7" | 1/)\§m)Kn7mu£—m)(uz(-m))TKm#n, where we write
K., n for k(x;,y;) with ¢ = 1..m and j = 1..n. This corresponds to the part of
the kernel matrix consisting of m rows and n columns, which evaluates the kernel
between m sampling points, called landmarks, and n points. We can simplify
this even further: ~
K= Kn,mK71 Km,n;

m,m

where K, denotes the Moore-Penrose pseudoinverse of the matrix K™,

In practice, for n given points, to approximate the n x n matrix, we only need
to sample m landmarks and compute the kernel between the landmarks and all
n points. This reduces the complexity from O(n?) to O(mn) for evaluation
of K,;m plus O(m3) for inversion of K, leading to linear complexity in
the number of data points. Note, that there exist many different sampling
techniques to improve the quality of approximation ([3], [4]) but for simplicity we
use random sampling. It should be mentioned, that the Nystrom approximation
was proposed for psd matrices, but for M1 there is no guarantee that the resulting
matrix will be psd. Fortunately, as stated in [2], the Nystrom technique can be
applied for an arbitrary symmetrical matrix.

5 Experiments

To demonstrate the usability of the proposed technique we report experimental
results on two data sets. Both data sets were provided by Prof. Marc Meurens,
Université catholique de Louvain, BNUT unit.

0j - depicts near-infrared spectra of orange juice together with the level of
saccharose. There are 150 different spectra each sampled at 700 positions.
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Fig. 1: Visualization of the features for oj data set. The mutual information ma-
trix was fully computed (left) or approximated (right). Crosses denote features
and the lines connect neighbouring features in the spectrum.

wine - depicts the mean infrared spectrum and the corresponding level of alcohol.
The data set consists of 94 different wines and the spectrum is sampled at
256 positions.

The MI was computed for all features, resulting in a D-by-D square matrix,
or, via the Nystrom technique using 10 landmarks. Afterwards the matrices are
projected into two dimensions using CMDS. Any different visualization technique
could be used as well, but we used a simple linear method, since it already
preserves 79% and 73% of variance in the data, for oj and wine respectively.
The projected points are overlaid by connecting functional neighbors.

The features of oj show clear structure (Fig. 1). Features which are close
in the spectrum are also close in the projection. Hence different parts of the
spectrum provide different information about the data. Still, some features are
grouped into clusters and each cluster represents a spectral band. The Nystrom
approximation is able to retain the overall structure of the data and reduces the
run time from 1452 to 21.2 seconds.

The features of wine (Fig. 2) seem to be closely related to each other. They
build a tight cluster in the center with a few outliers. The same image results
using approximated MI with a run time of 21.2 instead of 131.6 seconds. The
features in the cluster seem to be very strongly correlated to each other and
thus they can be represented by only a few features. Depending on the goal one
could now focus on the center cluster or outliers, observable in the display.

6 Conclusion

We presented a technique which can be used as a first tool to quickly analyze
a new spectral data set, to assess the structure of the feature correlations and
to discover possibilities for feature selection. Our method is based on the MI,
which is widely used in the field to select features in supervised as well as in
unsupervised scenarios. Although the presented approach is unsupervised, it is
possible, as shown in [6], to compute the pairwise MI with regard to the auxiliary
information, thus turning it into a supervised technique.

From the experiments we can see, that the Nystrom approximation on MI
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Fig. 2: Visualization of the features for wine data set. The mutual informa-
tion matrix was fully computed (left) or approximated (right). Crosses denote
features and the lines connect neighbouring features in the spectrum.

matrices is feasible, since it does not lose too much information, at the same time
reducing the complexity from a quadratic to linear one (note that it can be di-
rectly integrated into CMDS such that the full setting is effectively linear.) This
is especially crucial for MI, which is slow to compute such that approximations
are mandatory if thousands of features should be judged this way.
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