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Abstract. In this paper, we introduce a new clustering method using

the Delaunay triangulation of a set of points as an input. The proposed

method is based on pruning extra simplices of a triangulation according

to a local heterogeneity measure, which we introduce here. This measure

produces good clustering results as it yields to better inter-cluster simplices

detection. The efficiency of the measure is evaluated on 2-D shape data

set.

1 Introduction

Combination of interaction and visualization proposes a trustworthy paradigm
for knowledge discovery. This combination allows both to grasp visually the con-
ceptual meaning of the data and to interact with its user-dependent interesting
parts. Therefore, to allow user to have a visual insight of this possibly exist-
ing conceptual information, the visualization has to respect the following two
properties: being visually understandable and being data-topology preserving.

Our very basic objective is to construct qualitative information out of quan-
titative information by the means of analyzing distances and studying existence
of connected components [1]. This means here constructing information about
the way data points are related to each other in order to detect clusters of points.
Graphs are a suitable tool to preserve the so-called topology as they may carry
both local (neighbors) and high-level (clusters) information that exists among
data points. Furthermore, they are well-suited to visualization. In particular,
proximity graphs, also called neighborhood graphs [2], are a family of graphs for
which closeness between pairs of vertices is symbolized by edges. Depending on
how one might define closeness, some of the notable proximity graphs are De-

launay, RNG, Gabriel or MST ones [2]. In this paper, to embed this proximity
information, we make use of the Delaunay triangulation (DT) as it is the dual
of a structure which explicitly represents the topology among the data points:
the Voronoi diagram.

The reasoning that follows the proposed method to cluster a given point cloud
is straightforward. First, the topological relationships between input data points
is computed and, secondly, this information is refined by detecting clusters.
The proposed method constructs first the DT of the points and then computes
local information to prune the possibly existing inter-cluster simplices, eventually
revealing the intra-cluster ones. The underlying problem addressed throughout
this paper is therefore revealing the possibly existing clusters among a set of
points from their DT, by the means of pruning simplices.
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2 Problem Statement and Related Work

2.1 Proximity graphs

Let us define here the proximity graph that describes a data points set S ⊂ Rd.
Let G = (V,E) be an unoriented graph such that V and E are its vertices and
edges sets respectively. A proximity graph of S is a graph G for which V = S and
E = {(p, p�) ∈ S2, close(p, p�)}, with close an indicator function which equals 1
if p is close to p�, 0 otherwise. Thus, the Delaunay graph of S, DG(S), is a graph
for which E = {(xi, xj) ∈ S2, Vi ∩ Vj �= ∅} with Vi and Vj the Voronoi cells of
points xi and xj and i, j ∈ [1...n]. An edge is thus defined in case of existence
of an adjacent Voronoi face between the Voronoi cells of two points of S.

2.2 Clustering using Delaunay diagram

Referred to as graph theory-based clustering methods [3], the algorithms that
cluster data points by the means of proximity graphs construction are composed
of two steps: constructing first the graph and then pruning irrelevant edges. A
typical example is the well-known Zahn’s clustering algorithm that seeks con-
nected components as clusters by detecting and deleting inconsistent edges in
the minimum spanning tree [4]. Introduced in the context of hierarchical clus-
tering, AMOEBA algorithm leverages the density-preserving property of the DT
of a set of points [5]. Indeed, it introduces a both local and global edge-removal
criterion based on the edges length distribution: if the length of a given edge
exceeds the global mean value plus a local tolerance value then it is pruned. It
provides good results and detects nested clusters. AUTOCLUST algorithm [6]
is based on both local and global edge-removal information as well. It detects
points whose incident edges lengths have an unusually large standard deviation
and eventually leads to deleting significantly long (and short) edges [6]. Algo-
rithms such that in [7] or [8] also proceed to long edges deletion but only with a
global criterion.

However, these algorithms do not take into account the topological informa-
tion carried by the simplices themselves. To leverage the simplices emptiness
information, the algorithm proposed in [9] derives the number of clusters from
classifying triangles (2-simplices) as ones with high perimeter value and ones
with low perimeter value, with respect to their distribution among the triangles.
It then takes into account the fact that the constructed triangles do not contain
any other point (as a consequence of being Delaunay ones) and therefore assumes
that large triangles are prone to be inter-cluster ones. Following this reasoning,
we introduce a new heterogeneity measure that provides a more precise indicator
of being an inter-cluster simplex.
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3 Clustering Approach

3.1 Delaunay simplices and heterogeneity measure

Our objective here is to evaluate the propensity of the measure we introduce
to create an ordering over the constructed simplices: useless (inter-cluster) ones
are expected to have significant higher values. In a given DT, three types of
simplices can be enumerated: the inter-cluster, the intra-cluster and the noisy-
points-involving ones. Inter-cluster simplices and those involving noisy points
have significant larger perimeter: as clusters are denser parts of the data clouds,
simplices composing them have lower perimeter. Indeed, following a density-

based definition of clusters, typical edges linking two points of different clusters
are longer as compared to intra-cluster ones. Moreover, typical inter-cluster
simplices are composed of one face lying on the hull of one cluster and one
(d + 1)-th point lying on the hull of another cluster. The edges linking this
last point and the d other ones of the simplex are then significantly longer than
those on the hull of the other cluster. However, these remarks hold in case of
clusters of same density. In case of clusters of different densities, the assumption
of longer inter-cluster simplices may not hold, as clusters of lower density are
composed of longer simplices and therefore may have the same perimeter as some
inter-cluster ones. In this configuration, perimeter may fail to discriminate intra
from inter-cluster simplices.

In order to enrich the perimeter indicator, we define an indicator value of a
simplex to be lying between two clusters as the ratio of its longest and shortest
radii. The higher this value is, the more the simplex is prone to be inter-cluster.
Thus, this ratio may allow to differentiate simplices having equal perimeters by
pruning first the ones presenting a higher value and therefore higher heterogene-
ity. The composite measure that we introduce here takes into account this ratio
as along with the perimeter. Analogously to [6], we include as well the local
information of the standard deviation of the heterogeneity among the adjacent
simplices: the higher this value, the more the simplex is prone to be an inter-
cluster one as the more the adjacent simplices are prone to belong to different
clusters.

Thus, the introduced measure: 1) leverages the empty-sphere information
using the perimeter, 2) evaluates the heterogeneity of one simplex (having at
least one significantly larger edge than the other ones), as a large perimeter
does not necessarily involves points of different clusters, 3) leverages the local
information of a simplex by evaluating the propensity of the adjacent simplices
to belong to the same cluster.

3.2 Clustering measure and algorithm

Given a simplex s belonging to the DT of S, its edges and adjacent simplices
sets, Es and N(s), we define:

µ1(s) =
�

e∈Es

|e| (1)
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µ2(s) =
maxEs

minEs
(2)

µ3(s) = µ1(s) ∗ µ2(s) ∗ LSD(µ2, s) (3)

with, analogously to [6], LSD(µ, s) the local standard deviation of measure µ
over set s∪N(s). Let µ1 be the perimeter value of s (as experimented in [9]), µ2

the heterogeneity indicator and µ3 the composite measure we finally propose.
The measure value µ3(s) takes into account local neighboring information and

takes a higher value the more s is: 1) large, 2) composed of edges of heteroge-
neous length, 3) surrounded by simplices of different homogeneity. As mentioned
earlier, weighting µ1 by µ2 allows to differentiate between two simplices having
the same perimeter value by setting a higher value to the one presenting edges of
heteregeneous length. As this remark may not hold in case of two clusters having
different densities (the lower density intra-cluster simplex may be set to a higher
value and thus be pruned away first), we weight µ = µ1 ∗ µ2 by LSD(µ2, s) to
leverage the local heterogeneity information around s. This weighting eventu-
ally put forward for deletion inter-cluster simplices and manages to differentiate
between simplices with the same µ1 ∗µ2 value as it exhibits the ones with higher
LSD values.

4 Experimental results

The proposed clustering algorithm is composed of the following three steps:
1) construction of DT (S), 2) sorting of the simplices in increasing order with
respect to the measure value, 3) pruning of the simplices presenting higher values.
The method is tested on the well-known Zahn’s compound data set [4] as it
notably presents clusters of different densities and nested clusters. The data
set is composed of 399 2-dimensional points defining 6 clusters. The cluster
labels are indicated in Figure 1-(a). The original triangulation is composed of
399 points, 777 triangles and 1175 edges. Presented experiments rely on our
implementation of the d-dimensional algorithm formulated in [10].

4.1 Analysis of the simplices deletion order

Let us study the ordering provided by measure µ1 ∗ µ2. Figure 1-(b) illus-
trates that the first two exhibited connected components consist of the clusters
C1 = {1, 2} and C2 = {3, 4, 5, 6}. The first inter-cluster simplices that are
pruned are the ones between C1 and C2 as they present the largest perimeters.
Figure 1-(c) illustrates the exhibition of clusters C3 = {3, 4}, C4 = {5} and
nested cluster C5 = {6}. The corresponding pruned simplices present high het-

erogeneity. Then, Figure 1-(d) reveals nested cluster C6 = {2}. At this stage of
pruning, we note that clusters 1 and C3 are severely damaged. In particular, to
reveal cluster 2, most of the edges of cluster 1 have been deleted as an expected
consequence of: 1) weighting the measure by the perimeter and 2) cluster 2 being
of lower density. We mention that, using measure µ1, µ2 and µ1 ∗ µ2, the pre-
sented experiments did not lead to actual exhibition of cluster 2 without severely
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(a) Original DT (b) µ1 ∗ µ2 : 20.8% (c) µ1 ∗ µ2 : 25.3%
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(d) µ1 ∗ µ2 : 35.7% (e) µ2 ∗ LSD : 35.27% (f) µ3 : 24.48%
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Fig. 1: Measures and pruning. (a) Original DT . (b)-(d) Impact of the
pruning on the clusters exhibition for µ1 ∗µ2. (e)-(f) Nested cluster 2 exhibition
for measure µ2 ∗LSD and µ3. The associated proportion of pruned simplices is
displayed.

deteriorating cluster 1. As illustrated in Figures 1-(e) and (f), µ2 ∗LSD and µ3

address this problem as they clearly reveal the inner hull of cluster 1. Besides,
µ3 prunes inter-cluster simplices for significant lower value and therefore better
preserves the clusters quality, as showed in the following section.

4.2 Comparison of measures

Table 1 shows the influence of the pruning measure on the clustering qual-
ity. For one given cluster C, we evaluate indices I1(C) = 1 − |Einter(C)|

|Eintra(C)| and

I2(C) = 1− |Einter(C)|
|Eref

inter(C)|
, with Eintra(C) (resp. Einter) the inner (resp. outward)

edges of cluster C. Eref
inter(C) are the inter-cluster edges of C in the original

triangulation. I1 measures the propensity to reveal clusters without deterio-
rating them and I2 the propensity to prune inter-cluster simplices. Both have
to be maximized. Table 1 compares the effect of each presented measures on
the clustering quality: simplices are sorted in increasing order with respect to
the measure value and those with higher-values are pruned, yielding then val-
ues I1 and I2. For demonstration, we arbitrarily pruned 30% of higher-valued
simplices.

First, we note that µ3 exhibits higher values for both I1 and I2. For the given
pruning value, µ3 deteriorates less the clusters and put forward for deletion inter-
cluster simplices efficiently. Compared to the other measures, µ3 achieves better
results as it yields the highest cumulated values for I1 and I2. Compared to
µ2 ∗ LSD, which also detects cluster 2, µ3 prunes simplices between clusters 1
and 2 for a lower pruning value as a consequence of leveraging the association
of the perimeter and local heterogeneity information.
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I1(I2) no prun. µ1 [9] µ2 µ2 ∗ LSD µ1 ∗ µ2 µ3

1 0.34(0) 0(0.82) 0.66(0.55) 0.84(0.78) 0.83(0.90) 1 (1)

2 0.78(0) 0.94(0.74) 0.86(0.42) 0.93(0.72) 0.97(0.85) 1 (1)

3 0.71(0) 0.97(0.93) 0.89(0.66) 0.90(0.69) 0.93(0.79) 0.91(0.76)

4 0.68(0) 0.98(0.95) 0.91(0.73) 0.90(0.70) 0.95(0.84) 0.93(0.81)

5 0.81(0) 0.96(0.78) 0.98(0.90) 1 (1) 1 (1) 1 (1)

6 -0.06(0) 0.51(0.54) 1(1) 1 (1) 1 (1) 1 (1)

Sum 3.26(0) 4.37(4.76) 5.31(4.25) 5.58(4.89) 5.67(5.38) 5.84(5.57)

Table 1: Comparison of the measures. I1 and I2 values achieved for the 6
clusters after the pruning of 30% of the simplices (and with no pruning).

5 Conclusion

As shown in the experiments, the introduced method and measure provide
promising results for data clustering as it creates an ordering which tends to ex-
hibit efficiently inter-cluster simplices and notably performs better than perime-
ter measure. Moreover, the introduced measure is suitable for hierarchical clus-
tering. Future works will include testing our measure on an AMOEBA-like
hierarchical algorithm. Forthcoming works will focus on the extension to higher
dimensions.
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