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Abstract. The adaptive and automated analysis of hyperspectral data
is mandatory in many areas of research such as physics, astronomy and
geophysics, chemistry, bioinformatics, medicine, biochemistry, engineering,
and others. Hyperspectra di�er from other spectral data that a large fre-
quency range is uniformly sampled. The resulting discretized spectra have
a huge number of spectral bands and can be seen as good approximations
of the underlying continuous spectra. The large dimensionality causes nu-
merical di�culties in e�cient data analysis. Another aspect to deal with
is that the amount of data may range from several billion samples in geo-
physics to only a few in medical applications. In consequence, dedicated
machine learning algorithms and approaches are required for precise while
e�cient processing of hyperspectral data, which should include also expert
knowledge of the application domain as well as mathematical properties
of the hyperspectral data.

1 Introduction

Spectral data play a key role in many areas of theoretical and applied research.
Among them are physics, earth sciences, biochemistry, life-sciences and medicine,
where the analysis of hyperspectra are essential [16, 58, 70]. During the last
years, the resolution of measurement equipment and scanners has drastically
improved [17, 42, 84]. Thus, scanners with a wide range of spectral informa-
tion obtained for a single measurement are available. Multispectral scanners
sample the frequency range using a few spectral channels with wide bandpasses.
Hyperspectral data di�er from multispectral data by narrowly spaced and uni-
formly sampled bandpasses with a huge number of bands. The typical vectorial
representation of the spectra causes serious numerical problems: Theoretically,
because of the large data dimension a huge number of data samples is required
for representative data space sampling. The amount of available data may range
from up to several millions samples in geophysics and astronomy to only a few in
medical applications. For analysis of such data, standard techniques like multi-
variate statistical data analysis [22, 60], support vector machines and statistical
learning [21, 67, 95], as well as neural network methods [28, 74] have been used.
In this paper we give an overview about recent developments and challenges in
hyperspectral data analysis (HDA) in the context of machine learning approaches
emphasizing the particular characteristics of hyperspectral data.
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Figure 1: Comparison of multispectral and hyperspectral data sensors. Visualized
examples are from satellite remote sensing (adapted from [14]).

2 Characteristics of Hyperspectral Data

Frequently, hyperspectral data are given in vectorial form v = (v1, . . . , vn)
>

with typically large n, i.e. a hyperspectral vector may contain up to thousands
of dimensions. The dimensions are also denoted as spectral bands in this context.
Hyperspectral data can be distinguished from multispectral data in a way that
hyperspectral scanners provide a uniform representation of the spectral range,
for example see Fig. 1.

Due to this characteristics, hyperspectral vectors can be seen as discrete rep-
resentations (approximations) of continuous spectra vi = ϕ (ωi) with ϕ being a
continuous function of a frequency/wavelength value ωi. Even through hyper-
spectral data have a large data dimension, the intrinsic dimension (Hausdor�
dimension) is usually much lower than the number of data dimensions, because
the spectral bands are highly correlated. The Hausdor� dimension can be es-
timated with several methods [12, 13, 25, 38, 79, 6]. Hence, functional data
analysis (FDA), speci�cally optimized for hyperspectral data analysis can be
applied [27, 77, 57]. One key point in FDA is that the functional data vectors
may be linearly represented by a convex linear combination

ϕ (ω) ∼
N∑

k=1

γk · ψk (ω, αk) (1)

of so-called basis functions ψk (ω, αk) speci�ed by a parameter vector αk. In
this linear view, data analysis can be done in the coe�cient data space formed

by the vectors γ = (γ1, . . . , γN )
>
. Examples of basis functions are radial basis

functions (rbf), the logistic function, Gaussians or Lorentzians. Piecewise linear
functions and related norms are considered in [10, 29, 77]
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Further assumptions on properties of spectral data can easily be veri�ed:
The spectra can be mathematically treated as positive functions ϕ (ω) ≥ 0,
which are, at least for its discrete realizations, bounded. These functions are
denoted as positive measures. A special subset of positive measures are prob-
ability functions. For both function types, appropriate functional dissimilarity
measures can be considered: Information theoretic learning is based on diver-
gences [18, 56, 86]. Many divergences can be extended such that they are appli-
cable also for positive measures [87]. Functional norms like Sobolev norms can
be applied if the spectral functions ϕ (ω) are additionally supposed to be di�er-
entiable [85]. The Sobolev norm of a spectral function can be written in the form

‖ϕ‖SK,p = ‖ϕ‖p +
∑K

j=1 ‖Dj [ϕ]‖p where ‖•‖p is the Lp-Lebesgue-norm and Dj

is the di�erential operator of order j [32]. Hence, Sobolev norms pay attention
to spatial correlations in the frequency domain. Correlation measures also give
an alternative to the frequently inappropriate Euclidean distance [94, 78, 35].
Correlation measures can also be applied to line or peak spectra because they
do not require any spatial information.

Principal component analysis (PCA, [31]) is a standard technique for di-
mensionality reduction and data compressing. It can be extended to functional
PCA which is a standard PCA in the coe�cient data space using the linear
decomposition (1) [77]. Standard PCA in the original data space may become
computationally crucial due to the high data dimensionality blowing up the re-
quired covariance matrix. If only a few principal components are su�cient for
data description, adaptive Hebbian learning is an alternative, which only im-
plicitly uses the information of the covariance matrix [54, 63]. Originally, the
method was developed for Euclidean space, Sobolev-Hilbert spaces are consid-
ered in [88]. Recently, this method was further extended to be applicable for
non-Euclidean spaces, such as Lp=1-Lebesgue-normed spaces, kernel spaces, and
Sobolev spaces [8].

3 Machine Learning Approaches for Hyperspectral Data
Analysis in Astronomy and Geosciences

One of the most promising �elds of HDA applications are in satellite or airborne
remote sensing image analysis [16, 41, 58, 70]. Spectra are collected by remote
sensing, from telescopes, air- or spacecrafts, and by robots. Visualization of this
information as well as knowledge extraction and data mining are challenging pri-
mary tasks, that become increasingly attractive for machine learning approaches
with improved and accelerated hardware for fast processing [75]. Applications
can be found in all kind of geosciences, agriculture, etc.

Depending on the considered object and region as well as the spectral mea-
surement method (near-infrared - NIR, and thermal infrared -TIR), subtle dif-
ferences in local wavelengths (bands) may provide substantial information to
distinguish the organic or anorganic material of the observed surface area. The
underlying physical process that determines the spectral shape is the preferential
interaction of light with di�erent materials at di�erent wavelengths. Materials
can have multiple absorption features, each of which may be very narrow or
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quite wide. Therefore, investigations based on principal component analysis
frequently fail [92]. Neural networks and machine learning methods may o�er
alternatives [7, 23, 48, 51, 81]. However, the mentioned features contribute to
di�culties for adequate data modeling and processing also in machine learning
and computational intelligence. Otherwise, precise analysis of synthetic spectral
data may help to develop successful variants of known algorithms speci�cally
designed for a given problem [11].

One of the most prominent vector quantizers is the self-organizing map
(SOM, [37]). Beside its vector quantization abilities, the property of topo-
graphic mapping makes SOMs an appropriate tool for visualization in remote
sensing [6, 49, 91]. Precise data analysis by means of SOMs requires additional
e�orts like magni�cation control as well as SOM-based cluster and separation
analysis [50, 45, 47, 80, 83]. An alternative vector quantizer to SOMs is neu-
ral gas (NG, [43]), which frequently yields better quantization results and is,
therefore, well-suited also for hyperspectral data analysis [71]. An unsupervised
multi-view feature extraction for dimensionality reduction using the speci�c data
structure in image cubes is proposed in [93]. Another successful alternative to
SOMs are ART maps [15] for clustering and novelty detection.

Supervised classi�cation can be realized using multi-layer perceptrons or sup-
port vector machine as powerful adaptive classi�ers [22, 28, 67, 76]. An overview
in the context of hyperspectral imaging can be found in [17, 84]. An alternative to
these approaches are variants of learning vector quantization (LVQ, [37]), which
extend the basis algorithm and are speci�cally adapted to high-dimensional prob-
lems with subtle features in spectra to distinguish the classes. These extensions
include relevance learning for weighting and extracting those bands that are
important for classi�cation [26, 44]. A further extension of relevance learning
is matrix learning taking into account the correlations between bands [68, 69].
Related to classi�cation problems is spectral unmixing of components, which are
comprised in the spectral signature of a single pixel covering a spatial area in
the image. Unmixing is also known as the problem of automatic endmember
detection. Unmixing allows the estimation of physical parameters of the ob-
served material from their complex spectral shapes. Commonly, this problem
is savaged using convex optimization tools, however, restricted to only a few
components due to numerical instabilities [46, 48]. Neural network alternatives,
also applicable for a serious number of components, are proposed in [24, 55, 90].

4 Machine Learning Techniques for Hyperspectral Data
Computational Biology, Medicine and Related Fields

Hyperspectral data in biology, medicine, and life sciences become more and
more attractive for precise non-invasive analysis of objects, plants/vegetation,
crops, meat, etc. [3, 4, 2, 72]. Hyperspectral data are obtained from several
measurement techniques like mass spectrometry (MS), nuclear magnetic reso-
nance spectroscopy (MNR), NIR and other. The amount of data in typical
applications tends to be still quite large but limited compared to astrophysical
applications. Particular challenges arise in medicine, where often only a few
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samples are available. Further challenges in biomedicine include topics like di-
versity and inconsistency of biological data, unresolved functional relationships
within the data, imbalanced data, or large variability. Yet, machine learning
methods seem to be successfully contributing to the solution of these problems
in hyperspectral data analysis [73] as well.

In comparison to remote sensing, here additional di�culties occur due to the
application area: the raw spectra are usually contaminated with high-frequency
noise and systematic baseline disturbances. Additionally, the alignment of spec-
tra, i.e., a frequency shifting, is necessary to remove the inaccuracy of the
instruments [1, 65]. Even preprocessed hyperspectra often still remain high-
dimensional such that dimensionality reduction is required. Although the spec-
tra are functional vectors, an underlying smooth di�erentiable function cannot
always be assumed, such that the above outlined decomposition methods, see
eq. (1), are not applicable for dimensionality reduction. Here, speci�c proce-
dures and heuristics have to be applied for dimensionality reduction including
detailed knowledge about the data. For example, generating informative peak
lists for MS-spectra is highly non-trivial [66, 64]. Information theoretic methods
for feature extraction are investigated in [29, 40, 62]. Regularization techniques
may help to achieve sparseness in data representation [10, 36, 59, 82] Denoising
using wavelet decomposition together with PCA for hyperspectral data is stud-
ied [9] to re�ect the spatial as well as the spectral relations in the data within
the denoising procedure. Independent component analysis (ICA, [19, 20, 30]) is
considered in [39, 61].

If the resolution of the spectral data is not too high, i.e., if the dimension
of the functional data vector is moderate, then a processing without complexity
reduction may become feasible. Otherwise, parallelization of algorithms may be-
come attractive and promising [5]. Of course, the functional aspect of the data
should be kept in mind, although standard techniques like the above mentioned
neural networks may be successfully applied. Functional metrics like Sobolev
norms or divergences for dissimilarity estimation and vector quantization of hy-
perspectral data are applied in [52, 53]. Relevance learning in classi�cation by
LVQ methods taking into account the di�erentiability of the hyperspectra to
obtain smooth relevance pro�les are considered in [33, 34, 89].

Generally, the integration of expert knowledge beside the functional aspect
of hyperspectra is still underestimated although promising in other �elds of re-
search [34]. This could include knowledge about hierarchies in data and data
classes or asymmetric classi�cation costs, the latter one to re�ect the problem
of sensitivity and speci�city. Classi�cation learning including those assumptions
and restrictions would provide new perspectives. These may become particu-
larly attractive in bio-/life-sciences applications, because of the limited number
of available data samples in comparison to the huge dimensionality of hyper-
spectra.

5 Conclusion

In this tutorial paper we discussed some new trends and developments in ma-
chine learning of hyperspectral data. We emphasize that hyperspectra should
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be treated as functional data taking into account their speci�c characteristics.
In particular, the machine learning methods should deal with the inherent cor-
relations in the vectors directly or use adequate preprocessing to achieve a faith-
ful analysis. Additionally, structural expert knowledge should be integrated to
reduce the complexity of the problems such that more precise results can be
obtained. This becomes especially important, if only a few spectra are available
due to the application area like in biomedicine, for example. Without any claim
of completeness, we highlighted several new possibilities developed during the
last years for an appropriate handling of hyperspectral data.
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