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Abstract. The estimation of the concentration of an infectious agent
in the environment is a key step to trigger an alert when there is a bio-
logical threat. This concentration can be obtained trough a quantitative
polymerase chain reaction (qPCR). Nevertheless, standard real-time pro-
cedure do not address detection delay which is a main concern in alert
triggering. Therefore, we propose a method based on Lasso regression and
CUSUM change detection to accurately estimate the concentration while
minimizing the detection delay. The trade-off between accuracy and delay
can be managed through a parameter. We compare our results with those
found by a standard method (threshold method) and promising results are
obtained.

Keywords: Real-time PCR, quantitative PCR (qPCR), Change detection,
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1 Context

A sample of interest is taken from environment in order to be tested by Poly-
merase Chain Reaction (PCR). At each reaction cycle, genetic information sup-
ports are doubled [1, 2]. When a fluorophore matching specific genetic infor-
mation from an infectious agent reaches its target, it emits light. Thus at each
cycle of PCR, fluorescent light signal increases as genetic information increases
(fig. 1(a)). This signal has three steps: baseline, exponential and plateau. The
break time between baseline and exponential steps is log-linear to the initial
concentration of targeted agent [3, 1]. Thus if we know accurately this break
time (or specific cycle), we can compute the initial concentration of the agent in
the sample. Moreover, in the context of alert triggering, the time between this
break and the actual detection, that is detection delay, should be short.

Among methods described for specific cycle (change) detection in Biology
works, we can cite: a) The threshold method in which the specific cycle
corresponds to the last time the fluorescence curve intersects a threshold [2, 1].
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b) The second derivative method in which the specific cycle is defined by
the maximum of the fluorescence curve second derivative [1]. c) The sigmoid
curve fitting method in which the specific cycle is linked to a parameter of
a curve model [3]. None of them study the alert delay. Methods described
for change (specific cycle) detection in Signal Processing can be split into two
families: a) Off-line methods. For example, derivation method studied in [4]
or the sigmoid curve fitting method (see above). Here, the full knowledge of
the signal is assumed before the decision is taken. b) On-line methods. For
example, the Shewhart rule, the moving average rule, the CUSUM method [4, 5].
Here, observations arrive continuously, alert can be triggered as soon as possible.
Under this latter setting, a trade off between precision on change detection and
alert delay can be made accordingly to the application context.

Our proposal: To address detection delay meanwhile taking into account
accuracy in quantitative real-time PCR, we use an on-line CUSUM method
for fluorescence change detection. A kernelized-Lasso regression is done as a
preprocessing step to overcome signal drift and to get rid of outlier samples.

Results will be compared with the threshold method included in the appa-
ratus from which our data are recorded.

2 CUSUM

2.1 Introduction

To detect a potential break point t0 from a time series in a sequential manner
Page [6] introduced the CUSUM method that optimizes the detection delay.
It is a statistical test between two hypothesis: no break point (H0) or break
point (H1) occurs. Under (H0) observed data is assumed to be i.i.d. from
some distribution Pθ0 where θ0 is a parameter while under (H1) observed data
underlying distribution parameter change from θ0 to θ1 at break time r that is

∃ r such that

(H0) : X = {Xt}t=1,...,s � Pθ0 vs (H1) : {Xt}t=1,...,r−1 � Pθ0

{Xt}t=r,...,s � Pθ1

where s is the length of the signal. Thus, under null and alternative hypothesis,
data distributions are

L(X |H0) =

s∏

t=1

Pθ0(Xt), L(X |H1) =

r−1∏

t=1

Pθ0(Xt)

s∏

t=r

Pθ1(Xt) , (1)

leading to the following log-ratio [4, 5]:

S(X) = log
L(X |H1)

L(X |H0)
= log

∏r−1
t=1 Pθ0(Xt)

∏s
t=r Pθ1(Xt)∏s

t=1 Pθ0(Xt)
=

s∑

t=r

log
Pθ1(Xt)

Pθ0(Xt)
.

(2)
S(x) as a function of unknown break time r is denoted by Φs(r), the CUSUM
indicator. The distributions Pθ0 and Pθ1 are assumed to follow Gaussian distri-
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(b) CUSUM indicator Φs

Fig. 1: Preprocessing and CUSUM steps

butions respectively parametrized by (μ0, σ0) and (μ1, σ1). In our application
context, providing by experts that breaks do not occurs until smin = 20, (μ̂0, σ̂0)
are estimated on {xt}t=1,...,smin , σ̂1 is set to σ̂0, μ̂1 is estimated on {xt}t=r,...,s.

As r is unknown, detection is based on M , the log maximum of the general-
ized likelihood ratio,

M = max
1≤r≤s

Φs(r) . (3)

As we see from the figure 1(b), the indicator increases until it reachsM and then
decreases. We perform the following statistic test gs = M −Φs(s). If gs is below
a chosen threshold h, the signal is in (H0) state; otherwise, we have switched to
(H1) state. Here, an alert is triggered (i.e. the alarm time ta equals s) and the
break point, t0, is given by the position of M , that is, t0 = arg max

1≤r≤ta
Φs(r).

2.2 Application to fluorescence signals obtained by PCR

CUSUM can not be applied directly to a fluorescence signal. In our applica-
tion context, the fluorescence is not i.i.d. and outliers are encountered at the
beginning of the signal, disturbing the estimation of (μ0,σ0). That is why a
kernelized-lasso regression [7] is estimated on the twenty first observations by
solving the following linear program

argmin
α

||y −αK||1 + λ||α||1 , (4)

where α is coefficient vector of size smin, λ the regularization parameter, K the
Gaussian kernel matrix and y the smin first samples where smin = 20. Figure
1(a) illustrates on an example the way kernel lasso regression is used.

Moreover, the DNA duplication reaction is continuous but fluorescence is
not: fluorophore need light excitation in order to, at there turn, emit light. This
excitation process takes one minute (a cycle) which is far from the precision
needed to quantify the concentration. We need a better time precision than the
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sampling rate! This is overcome by using a spline approximation of the CUSUM
indicator, then, the break time (or specific cycle) t0 is redefined to the spline
maximum.

Algorithm 1 CUSUM algorithm for real-time qPCR

Pre-processing :
Wait for smin samples
Compute kernel regression on smin samples then (μ0,σ0) on residuals
Main algorithm:
s← smin + 1, decision← 0
while decision == 0 do

Compute Φs

[M, position]← max(Φs)
gs ← M − Φs(s)
if gs >= h then

decision← 1, ta ← s, t0 ← position
else

s← s+ 1 (Wait for a new sample)
end if

end while
Post-processing:
SΦs ← spline(Φs(t0 − 2 : t0 + 1))
t0 ← argmaxSΦs

3 Experimentation

3.1 Set-up

Fluorescence signals have been recorded on a standard apparatus, 7500 Fast
Real-Time PCR System of Applied Biosystems, which itself gives the specific
cycle by a simple threshold method at the end of the record. It can process
multiple samples in plate consisting in 8 lines by 12 columns of wells. Materials of
different kinds and at different concentrations are analysed in the wells: Each line
containing only one combination of tested material and fluorophore; Columns
(2 by 2) containing a specific concentration. The two last columns are negative.
The record of two plates have been processed, that is 192 signals (160 positive
and 32 negative).

As the threshold method and the CUSUM method do not look for the same
event in the signal, results can not be compared directly. Nevertheless, line by
line (material wisely), they should be linear together. Eventually, line by line,
CUSUM results and threshold results should both be log-linear to the concen-
tration. We will first consider results in term of detection (true positive versus
false positive) and, in a second step, look for the accuracy of the detection (log-
linearity to concentration) and detection delay only on true positive examples.
Accuracy is evaluated on the mean of residuals of log-regression performed line
by line. A trade-off between these two indicators can be made trough the h
parameter in the CUSUM method.
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Fig. 2: False alarm rate compared to the rate of correct detection, delay, accuracy

3.2 Results

Standard apparatus has a fixed point operation that gives 93.13% of true positive
rate with 3.12% of false alarm. On the true positive examples, the mean residual
of the log-regression between break time and log-concentration is 0.77 and the
detection delay 13.88 cycles.

The best operation point is obtained by CUSUM method at h = 1.5. The
proposed CUSUM method gives 94.37% of true positive rate with 3.12% of false
alarm. At this operation point, on the true positive examples, the mean residual
of the log-regression between break time and log-concentration is 0.35 and the
detection delay 1.26 cycles. The CUSUM method is on all indicators better than
the standard apparatus. Especially, it reduces by 10 the detection delay. An
example of log-linearity on a specific plate line is shown on figure 2(b).

By changing h, we can draw an operational curve (fig. 2(a)) in term of true
positive rate and false alarm rate. Moreover h influences the detection delay (fig.
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2(c)) and accuracy (fig. 2(d)). From those two last curves we can induced two
possible strategies: A) Taking h between exp(4) and exp(6) that leads to good
accuracy with a delay inferior to 2 cycles; B) Or taking h superior to exp(10)
that leads to an even better accuracy at the price of a higher delay.

For pratical use, we can recomend to use the operation point closer to 100%
true positive and 0% false positive. Error estimation can be estimed through
cross validation.

4 Conclusion

The determination of a characteristic cycle of the fluorescence from qPCR can
be done in continuous time and without prior knowledge of the total signal
through a CUSUM method. Care must be taken to estimate statistical models
at the beginning of the signal: a kernelized lasso regression is performed to avoid
outliers. We obtain similar results in term of true positive and false alarm rates
as standard apparatus but with better performance in term of concentration
estimation accuracy and detection delay. Moreover, the method is easily tunable
to application context (delay vs accuracy) trough a trade-off parameter.
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