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Abstract. We present a novel learning scheme to imprint stable vector
fields into Extreme Learning Machines (ELMs). The networks represent
movements, where asymptotic stability is incorporated through constraints
derived from Lyapunov stability theory. We show that our approach suc-
cessfully performs stable and smooth point-to-point movements learned
from human handwriting movements.

1 Introduction

Vector fields are a common representation in different applications and can be
used for instance to encode quantitative flow visualization, optical flow in com-
puter vision and force fields in motor control.

In this context, approximating vector fields from sparse data is a typical
scenario for learning algorithms. In [1], a superposition of irrotational basis
fields is used to approximate a variety of vector patterns, where it is assumed
that the data originate from a potential function. In [2], a combination of neural
networks is used to reconstruct vector fields, where prior knowledge of inherent
properties of vector fields is used to enhance the accuracy. Both approaches learn
from sparse data that is uncorrelated in time and space using prior knowledge.

In case of learning from data that is correlated in time, like movement tra-
jectories, different prior knowledge is required to guarantee the reliability of the
estimate. An approach suitable for learning vector fields from trajectories is the
Stable Estimator of Dynamical Systems approach (SEDS, [3]). It is based on a
mixture of Gaussian functions where global asymptotic stability is ensured by
fulfilling a specific Lyapunov function. In recent work [4], a superposition of
two neural networks is used for movement generation. The stability is addressed
by training the outputs of one network to implement the motion and the out-
puts of the other to generate dynamics towards this very motion. However, this
approach can not guarantee the stability of the motion.

We propose a novel learning method for representing vector fields based on
the Extreme Learning Machine (ELM, [5]) approach, which features efficient
supervised learning. The main contribution is to devise a learning scheme for
the ELM approach that incorporates stability constraints. These constraints
are derived from a parameterized quadratic Lyapunov function, to learn vector
fields which enforce stable movement generation. Several mechanisms have been
developed in order to improve the performance of ELMs without focus on in-
corporating constraints. One idea to improve ELMs is to decrease the size of
the hidden layer - the Optimally Pruned Extreme Learning Machine (OP-ELM,
[6]). Those methods are orthogonal to the proposed technique and can thus be
used in parallel.
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2 Neural Networks for Movement Generation

The dynamical system that we consider for movement generation is autonomous
and of first order, mapping positions x to vectors v, which are integrated over
time t:

xt+1 = xt + ∆t · v(xt) , (1)

where ∆t is a time constant for discretization of the continuous dynamics. The

Fig. 1: ELM used in an
integration-loop.

initial state of this dynamical system is denoted
by x0. We consider an ELM as depicted in Fig. 1
to encode vector fields. The ELM is a feed-
forward neural network, that comprises three dif-
ferent layers of neurons: x ∈ RI denotes the in-
put, h ∈ RR the hidden, and v ∈ RI the out-
put neurons. The input is connected to the hid-
den layer through the input matrix W inp ∈ RR×I

which remains fixed after random initialization.
The read-out matrix is given by W out ∈ RI×R

and is subject to supervised learning. For input
xt the output of the ith neuron is thus given by:

v̂i(x
t) =

R∑
j=1

W out
ij f(aj

I∑
n=1

W inp
jn xtn + bj) (2)

where slope aj and bias bj parameterize the component-wise Fermi function
f(x) = 1

1+e−x of the jth neuron in the hidden layer.

3 Implementation of Asymptotic Stability

Learning a vector field from a few training trajectories gives only sparse infor-
mation of the shape of the entire vector field. Therefore, there is considerable
need for generalization to spatial regions where no training data reside. The
most important feature in the case of point-to-point movements is to converge
to a given target. This target is described as a fixed-point attractor in the vector
field. Learning this attractor without prior knowledge is especially hard because
the training data comprises only a few training samples that encode the target.

In order to stabilize the dynamical system induced by the network, we recall
the conditions for asymptotic stability of arbitrary dynamical systems defined
by Lyapunov: a dynamical system is asymptotically stable at fixed-point x∗ ∈ A
in the compact and positive invariant region A ⊂ RI if there exists a continuous
and continuously differentiable function L : A→ R

(i) L(x∗) = 0 , (ii) L(x) > 0 : ∀x ∈ A,x 6= x∗ , (3)

(iii) L̇(x∗) = 0 , (iv) L̇(x) < 0 : ∀x ∈ A,x 6= x∗ . (4)

328

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0. 
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.



We assume that the function L satisfies condition (i)-(iii). In order to obtain a
learning algorithm for W out that also respects condition (iv) of the Lyapunov
function L, we analyze this condition by taking the time derivative of L:

L̇(x) =
d

dt
L(x) = (∇xL(x))T · d

dt
x = (∇xL(x))T · v̂ (5)

=
I∑

i=1

(∇xL(x))i ·
R∑

k=1

W out
ij · f(aj

I∑
k=1

W inp
jk xk + bj) < 0 . (6)

Note that L̇ is linear in the output parameters W out irrespective of the form
of the Lyapunov function L. For a given point u ∈ A, Eq. (5) and Eq. (6)
define a linear constraint L̇(u) < 0 on the read-out parameters W out, which
is implemented by a quadratic programming scheme introduced for ELMs in
[7]. Whereas it is shown in [7] that a well-chosen sampling of points U =
(u(1), . . . ,u(Nu)) : u ∈ RI , is sufficient to generalize the incorporated discrete
constraints to continuous regions in a reliable way. The read-out weights W out

are trained by solving the quadratic program with weight regularization:

W out = arg min
W

(‖W ·H(X)− V ‖2 + ε‖W‖2), subj. to: L̇(U) < 0 , (7)

where the matrix H(X) = (h(x(1)), . . . ,h(x(Ntr))) collects the hidden layer
states obtained from a given data set D = (X,V ) = (x(k),v(k)) : k = 1 . . . Ntr

for inputs X and the corresponding output vectors V and where ε is the regu-
larization parameter.

4 Learning Stable Point-to-Point Movements

In order to analyze the impact of the stabilization mechanism introduced in
Sec. 2, we perform movements learned from human-demonstrated handwriting
movements (benchmark data set [8]). The used data is composed of three S-
like trajectories with 250 samples each and the end-point located at the origin
(see Fig. 2). The ELM is initialized with R = 100 neurons in the hidden layer.
The slopes ai are initialized with ones, biases bi and components of W inp are
initialized randomly drawn from the uniform distribution on [−1, 1]. The regu-
larization parameter is ε = 10−5. The constraint set U consists of Nu = 2500
samples drawn from the uniform distribution on the set [−0.5, 2.1]× [−1.1, 2.5],
which covers the relevant region of the task space. Consider the Lyapunov func-
tion L(x) of the following form:

L(x) =
1

2
(x− x∗)T ·G∗TG∗ · (x− x∗) . (8)

This Lyapunov function L will be employed for learning to implement asymptotic
stability at the known fixed-point x∗. Note that (i) - (iii) describes the general
form of a Lyapunov function and are fulfilled if G∗TG∗ is positive definite. If a
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data set D is given, G∗ is chosen as:

G∗ = arg min
G∈G

MG with MG =

Ntr∑
k=1

Θ

(x(k)− x∗)T ·GTG︸ ︷︷ ︸
(∇xL(x(k)))T

·v(k)

 , (9)

where G := {G ∈ RI×I : λi ∈ [α, 1], λi is eigenvalue of G}, α is a small and
positive scalar, and Θ is the ramp function. The minimization operator in the
left part of Eq. (9) can be formulated as a non-linear program. We use successive
quadratic programming based on quasi-Newton methods for optimization [9].
The function M measures the violation of condition (iv) by the training data
with respect toG. The term Θ(·) guarantees that only those samples (x(k),v(k))
are counted in M where the scalar product between G · (x(k)−x∗) and G ·v(k)
is positive. To prevent an infinite stretching of G∗TG∗ through minimization
of M we restrict the eigenvalues λi of G∗ to α ≤ λi ≤ 1,∀i = 1 . . . I. We set
α = 0.1 in the experiments.

Fig. 2 (left) illustrates an example of unstable estimation of a nonlinear
dynamical system by an ELM trained without the usage of explicit stability
constraints. In the areas close to the demonstrations, the trajectories converge
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Fig. 2: The impact of the incorporation of asymptotic stability into the learning.
Visualized dynamics of a network trained without stability constraints (left) and
the same network trained with constraints for stabilization (right).

to an attractor next to the target. In other regions of the space, they either
converge to spurious attractors or diverge. In contrast, Fig. 2 (right) shows the
same network setup but trained with the stabilization method. The generated
trajectories converge to the target, because the learning process enforces asymp-
totic stability. This ensures that the target is reached when starting from any
point in the workspace. In the following we show an evaluation of the new stabil-
ity mechanism, using two performance measures. The first measure is the root

mean square error Etr =
√

1
Ntr

∑
k ‖v(k)− v̂(x(k))‖2 evaluated on the training

data, which quantifies the ability to approximate the training data. The second
measure quantifies the stability of the dynamical system. For this measure we
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chose Ns = 100 starting points uniformly drawn from [−0.5, 2.1] × [−1.1, 2.5].
The starting points are used to perform movements with Nmax = 1000 steps with
step size ∆t = 0.1; the resulting states x(Nmax) are recorded. If the end-point
x(Nmax) of the reproduced trajectory is in the vicinity of the desired attractor
x∗ = 0, the end-point is recognized as converged (i.e. ‖x(Nmax)−x∗‖ < δ = 1),
otherwise as diverged. The distance dist = ‖x(Nmax)− x∗‖ from the converged
points to the attractor and the number of converged points S are stored. All
results are averaged over Nni = 10 different network initializations.

In Tab. 1 the results of the experiments for networks with and without sta-
bilization for different regularization parameters ε are shown. The precision

without constraints with constraints
ln ε dist S/Ns Etr dist S/Ns Etr

−8 .431±.067 .686±.053 .208±.0006 .049±.014 1 .263±.0036
−6 .431±.018 .813±.031 .218±.0008 .043±.016 1 .283±.0043
−4 .401±.013 .917±.053 .235±.0027 .055±.014 1 .313±.0029
−2 .382±.010 .965±.044 .304±.0028 .020±.012 1 .377±.0026

Tab. 1: Network learning with and without constraints compared for different
regularization parameters ε.

is given in the distance (dist) of the end-point to the desired attractor after
convergence. The ratio S/Ns shows how many movements generated according
to Eq. (1) converged to the desired target. Note that S/Ns = 1 holds for all
constrained networks. The results show that the stability ratio increases with
growing regularization for networks trained without constraints. This induces a
trade-off between stability and accuracy for the unconstrained ELM. For the ex-
plicitly stabilized ELMs, the trade-off is resolved, because all networks converge
to the target independent of the regularization. Also the target is imprinted
with a higher degree of precision (cf. Tab. 1 dist). In Fig. 3 we show movements
learned from training shapes (black), generated trajectories (red), and the sur-
rounding vector field (blue). Note that all networks produce stable movements
which converge to the given attractor while respecting the training trajectories.

5 Conclusion

In this work we proposed a new learning scheme for Extreme Learning Ma-
chines (ELMs) to imprint stable vector fields and incorporate prior knowledge
into the learning. Prior knowledge in form of linear stability constraints are de-
rived from Lyapunov stability theory and incorporated efficiently by quadratic
programming. In our experiments we considered a quadratic Lyapunov function
as a proof of concept, but in general any Lyapunov function can be used. We
showed that the new approach is sufficient to encode point-to-point movements
accurately and that the trade-off between regularization and stability is resolved.
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Fig. 3: The figure shows 9 examples from the benchmark data set [8]. The black
lines represent the training data and the red lines are the reproduced movements.
The learned vector field is depicted in blue.
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