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Abstract. This work introduces a novel way to identify dense regions
in a graph based on a mode-seeking clustering technique, relying on the
Sum-Over-Forests (SoF) density index [1] (which can easily be computed
in closed form through a simple matrix inversion) as a local density esti-
mator. We �rst identify the modes of the SoF density in the graph. Then,
the nodes of the graph are assigned to the cluster corresponding to the
nearest mode, according to a new kernel, also based on the SoF frame-
work. Experiments on arti�cial and real datasets show that the proposed
index performs well in nodes clustering.

1 Introduction

General introduction. Density is an important concept in graph analysis and
has been proven to be of particular interest in various areas such as, for exam-
ple, social networks, biology and World-Wide-Web [2�4]. The task of identifying
dense regions on a graph can be based on various concepts (degree of a node,
cliques, cores, etc.) leading to various approaches (see Section 1). The key con-
cept on which our approach is based is forest enumeration and, in particular, the
matrix-forest theorem [5,6], an extension of the well-known matrix-tree theorem
(see, e.g., [7]), de�ning the Sum-over-Forests (SoF) density index [1].

A new clustering algorithm based on a mode-seeking procedure using the
SoF density index is developed. Indeed, this index is used to identify local peaks
of density in a graph, which are then considered as center of clusters (modes).
The clustering in itself is performed assigning each node to its �closest� mode,
according to a certain similarity (or distance) measure.

Brief related work. Clustering on graphs, also called community detection,
is a topic that received a lot of attention recently, and extensive reviews exist on
the subject (see for instance [8, 9]). Our work is more precisely based on mode-
seeking methods, like the Mean Shift algorithm [10], which compute the modes
of a probability density function to �nd high density areas. These methods were
originally intended to be used in the feature space of the data, but adaptations
to graph data were recently proposed [11�13]. Our work is quite similar to [13],
as they use random walks to de�ne modes (nodes most visited by a random
walker), coupled with a steepest ascent procedure to form the clusters.

2 Background and notation

Consider a weighted directed graph or network without self-loops, G, not neces-
sarily strongly connected, with a set of n nodes V (or vertices) and a set of arcs
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E (or edges). To each arc linking node k and node k′, we associate a positive
number ckk′ > 0 representing the immediate cost of following this arc. The
cost matrix C is the matrix containing the immediate costs ckk′ as elements.
If, instead of C, we are given an adjacency matrix with elements akk′ ≥ 0 indi-
cating the a�nity between node k and node k′, the corresponding costs could
be computed from ckk′ = 1/akk′ . The adjacency matrix containing the elements
akk′ is denoted by A, while the Laplacian matrix of a graph having adjacency
matrix A is L(A) = D −A, where D = Diag(ATe) is a diagonal matrix con-
taining the column sums of A. Here, e is a column vector full of 1's. Moreover,
if the graph is undirected, it is assumed that, for each arc, there exist directed
links in the two directions k → k′ and k′ → k.

3 The Sum-over-Forests density index

For completeness, the present section summarizes developments made in [1]
where the Sum-over-Forest density index is introduced, essentially based
on [5, 6] and [14]. The idea is to de�ne a bag of forests from which forests
are sampled according to a Boltzmann probability distribution, so that large
(high-cost) forests have a low probability of being sampled while short (low-
cost) forests are sampled with a high probability. Then, the SoF density index
of a node is de�ned as the expected outdegree of this node when sampling forests
according to the Boltzmann distribution, thus providing a smoothed measure of
density around that node.

Let us de�ne the set of rooted forests ϕ in the graph G as F = {ϕ1, ϕ2, . . . }.
The total cost of such a forest ϕ is de�ned as the sum of the individual costs of
the existing arcs belonging to ϕ, C(ϕ). A forest with no arc (containing only
individual nodes without any connection and thus no cost) has a 0 total cost. A
Boltzmann probability distribution is de�ned on the set F :

P(ϕ) =
exp [−θC(ϕ)]∑

ϕ′∈F
exp [−θC(ϕ′)]

(1)

where the denominator Z =
∑
ϕ∈F exp [−θC(ϕ)] is called the partition func-

tion. Now, the expected number of times a link k → k′ is present in a forest
can easily be computed through

η(k, k′) =
∑
ϕ∈F

P(ϕ) δ(ϕ; k, k′) (2)

where δ(ϕ; k, k′) is a Kronecker delta indicating if the link k → k′ is present
in forest ϕ. As shown in [1], this quantity can easily be computed in terms of
C thanks to η(k, k′) = − 1

θ∂(logZ)/∂ckk′ , which follows from the matrix-forest
theorem [5, 6]. Then, the expected outdegree of node k on a forest, which
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de�nes the SoF density index, is

dens(k) =
∑
ϕ∈F

P(ϕ)

(
n∑

k′=1

δ(ϕ; k, k′)

)
=

n∑
k′=1

η(k, k′) (3)

and corresponds to the sum of the contributions of the arcs issued from node k
(notice that for the expected weighted outdegree, we would have dens(k) =∑
ϕ∈F P(ϕ) (

∑n
k′=1 akk′δ(ϕ; k, k

′)) instead). It can be computed in closed form
for all nodes at once and requires a matrix inversion (see [1] for details):

dens = Wdiag(Z)− diag(WZ) (4)

with W = exp[−θC] (elementwise exponential), Z = (I + L(W))−1, L(W) =
Dw −W is the Laplacian matrix computed from W and Dw = Diag(We)
(for the expected weighted outdegree, we obtain dens = (A ◦W)diag(Z) −
diag((A ◦W)Z) where ◦ is the elementwise product).

4 The SoF mode-seeking clustering

Our algorithm is based on a simple mode-seeking procedure [10], as used in
the Mean-Shift method, with the di�erence that it operates directly on graphs
instead of the feature space.

The �rst step of our SoF clustering algorithm is to identify the modes of
the density on the graph. The density estimation is provided by the Sum-
over-Forests density index computed on each node (see Equation (4)). Then,
starting from any node, a steepest ascent procedure is used, jumping from the
original node to the one of its neighbour having the highest density score. This
procedure ends when a local density peak (mode) is reached, i.e., when a node
has the highest local SoF density score. The di�erent modes are then considered
as the prototypes or centers of the di�erent clusters on the graph.

In order to form the di�erent clusters, each node is associated to its corre-
sponding mode. This is done by computing a similarity measure between each
node and the di�erent modes, and then associating the node to the most similar
(closest) mode. The similarity measure showing the best results (detailed in Sec-
tion 5) is a SoF extension of the forest similarity (KFS) developed in [6], where we
replaced the adjacency matrix A by the W matrix de�ned above. This choice is
particularly consistent with our SoF density index, as it uses the same formalism,
and can also be obtained from the cost matrix C using KSoF = (I+ L(W))−1.

This similarity measure between two nodes i and j introduced here is a valid
kernel and has a nice probabilistic interpretation: it is the probability for node i
to be present on a tree rooted in j (and therefore connected to j, see [6]), knowing
that forests are sampled according to a Boltzmann distribution (Equation (1)).
It therefore corresponds to the a posteriori probability that the root node of i is
j, given the leaf node i of interest.

This clustering method works naturally in an unsupervised way (the natural
number of clusters does not need to be known a priori), but can also work in
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a supervised way. Indeed, when the set of modes has been identi�ed, it can be
restrained to the m clusters truly present in the data, by selecting the m largest
modes to where most of the nodes converge, and then applying the clustering
procedure. Obviously, this can only be done if the number of modes found is
greater than m. In summary, this clustering method has two main bene�ts : it
is unsupervised (even if it can also be used in a supervised way) and it works
directly on graphs.

5 Experiments

Datasets. Five small to moderately sized networks are used to assess the per-
formance of the clustering algorithm : Zachary's Karate Club [15], Dolphins [16],
Football [17], Sampson's Monastery [18], and Political Books [19].

Evaluation methods. As the ground-truth clustering for each of the network
used is known, the clustering obtained by the SoF method to the true clustering
can be easily compared, using two di�erent criteria: the adjusted rand index and
the normalized mutual information. We compare our clustering method (1) in
an unsupervised way to the Louvain method [20], and (2) when the number of
clusters is given as an input to the Kernel K-Means and the Kernel Hierarchical
clustering developed in [9]. Kernel K-Means is derived from the standard K-
Means clustering algorithm and is able to identify nonlinearly separable clusters
with the help of a kernel matrix. Kernel Hierachical clustering is a kernel version
of Ward's hierarchical clustering [21]. As these two latter methods need a kernel
matrix as input, we use the sigmoid commute-time kernel, with a parameter
γ = 7, which proved to give good results [9].

Results and discussion. The results for the adjusted rand index (ARI) and
the normalized mutual information criterion (NMI) are shown in Table 5. The
parameter θ for the SoF clustering method is �xed to 0.1, as this value provides
in all cases the best results. Moreover, we also observed that in order to identify
dense areas, the larger a graph is, the higher the value of θ should be. This may
be related to the forests' size, which are �scaled� according to the graph. The
results for Kernel K-Means, Kernel Hierarchical clustering and Louvain method
are averaged on 100 runs.

On the Zachary dataset, the SoF clustering obtains a perfect score of one
in the two criteria. Kernel K-means and Hierarchical clustering obtain good
results, with knowledge of the number of classes. The Louvain method �nds
three clusters (instead of two) and its result is quite below the other methods.
For the Dolphins dataset, results without providing the number of clusters are
essentially the same for the SoF and Louvain method. When the number of
clusters is known, the SoF method's results jump to the ones of Kernel K-Means
and above the ones of Hierarchical clustering. In the Football case, where 12
clusters are to be found, the SoF method identi�es 11 clusters, and the Louvain
method 6, which results in higher score for the SoF. In the supervised case, the
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SoFnbClust K-Means Hierarchical SoF Louvain
Zachary ARI 1 0.9252 0.8823 1 (2) 0.5943 (3)

(2) NMI 1 0.9067 0.8365 1 (2) 0.6360 (3)
Dolphins ARI 0.9348 0.9294 0.7537 0.4080 (4) 0.4293 (3)

(2) NMI 0.8889 0.8833 0.7014 0.6168 (4) 0.5985 (3)
Football ARI 0.5874 0.7709 0.8893 0.5874 (11) 0.3572 (6)
(12) NMI 0.7505 0.8669 0.9269 0.7505 (11) 0.6337 (6)

PolBooks ARI 0.6679 0.6703 0.6559 0.6679 (2) 0.5974 (4)
(3) NMI 0.6102 0.5706 0.5522 0.6102 (2) 0.5218 (4)

Monastery ARI 0.5352 0.4223 0.1088 0.2475 (8) 0.4686 (5)
(4) NMI 0.6548 0.5756 0.3579 0.6247 (8) 0.6332 (5)

Table 1: Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) values
for �ve networks. SoFnbClust represents the SoF clustering method with number of clusters
provided in input. For unsupervised methods (SoF and Louvain), the number of identi�ed
clusters is given in parenthesis.

results of the SoFnbClust are the same since the number of clusters found is below
the true number and we cannot add arti�cally new clusters (in the Dolphins case,
we only keep the modes which attract the most nodes). Hierarchical clustering
gives the best results on this dataset. For the Political Books dataset, the
SoF clustering performs better than the Louvain method, is slightly above the
Hierarchical clustering and very close to the Kernel K-means. Finally, the results
for the Monastery dataset show an ARI score inferior to the Louvain method,
but a NMI score almost equal for these two methods. When the number of
clusters is provided, the SoF clustering performs better than all other methods.

6 Conclusion and perspectives

This work introduces a new clustering algorithm: the SoF clustering. It is based
on a mode-seeking procedure, identifying the modes as peaks of SoF density,
and clustering the dataset using a forest similarity between the nodes. This
method, which can be used in an unsupervised way or by providing the number
of clusters, performs well on the �ve networks shown here. In the unsupervised
case, the SoF clustering matches, and in some cases, outperforms the Louvain
Method, and even the Kernel K-Means and the Hierarchical clustering. Without
surprise, when the number of clusters is provided, the performance can greatly
increase. In the future, the mode-seeking procedure detailed in this paper, using
the SoF density index, could be coupled to another clustering algorithm. Indeed,
the modes identi�ed could serve as cluster prototypes given as input to, for
instance, the K-Means method. The main drawback of the procedure is its
computational complexity. We will therefore investigate the adaptation of the
proposed technique to large graphs as, e.g., in [22].
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