
Improved Cat Swarm Optimization Approach 
Applied to Reliability-Redundancy Problem 

Carlos Eduardo Klein1; Leandro dos S. Coelho1,2,*; 
Ângelo M. O. Sant’Anna1, Roberto Z. Freire1, Viviana C. Mariani² 

1-Pontifical Catholic University of Parana (PUCPR) - Polytechnic School 
Industrial and Systems Engineering Graduate Program (PPGEPS) 
Rua Imaculada Conceição, 1555. Postal Code: 80215-901, Brazil. 

2 – Federal University of Parana (UFPR) - Electrical Engineering Department 

Abstract. System reliability-redundancy optimization plays a vital role in real-
world applications. Recently, a new meta-heuristic based on swarm intelligence 
called cat swarm optimization (CSO) algorithm has emerged. CSO is a stochastic 
optimization paradigm inspired from the natural behavior of cats. To enhance the 
performance of the CSO algorithm, an improved adaptive CSO (ICSO) algorithm 
is presented. Both CSO and ICSO approaches were applied to an overspeed 
protection system for a gas turbine, a benchmark in the reliability-redundancy 
mixed-integer optimization field.  Better results obtained by the ICSO show that 
the algorithm can be an efficient alternative for solving reliability problems.  

1 Introduction 

Reliability is one of relevant design measures in industry. A design engineer often 
tries to improve system reliability with a basic design, to the largest extent possible 
subject to several constraints such as cost, weight, and volume. In general terms, a 
reliability-redundancy optimization problem can be formulated to use components, 
and levels-of-redundancy to maximize some objective function, given system-level 
constraints on reliability, cost, and/or weight. During the past decades, numerous 
reliability design approaches based on optimization techniques [1-4] have been 
proposed. 
 Recently, many research activities have been devoted to the design of new 
metaheuristics [5,6]. The Cat Swarm Optimization (CSO) algorithm is a new 
metaheuristic approach based on swarm intelligence, introduced by Chu and Tsai in 
2006 [7,8]. This optimization algorithm was inspired from inspecting the behavior of 
cats. The strong curiosity about moving objects and the outstanding hunting skill of 
the cat were modeled for CSO, they are called seeking mode and tracing mode.  
 This paper proposes an improved CSO (ICSO) based on adaptive tuning of the 
seeking-tracing rate (TSRate) value. This modification was conducted as an effort to 
produce a better performance with better accuracy level in optimization problems. In 
this study, the validity and efficiency of the proposed ICSO approach are illustrated 
with a reliability-redundancy optimization benchmark, an overspeed protection 
system for a gas turbine [9-11]. Finally, the results of the proposed ICSO approach 
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are compared with other optimization techniques presented in literature. Comparison 
results show that ICSO obtains a promising performance in the tested benchmark. 

2 Background Information Optimization on Reliability-
Redundancy  

The reliability-redundancy allocation problem of maximizing the system reliability 
subject to constraints can be formulated as [12] 
 

maximize   Rs = f(r, n), (1) 
subject to    

g(r, n)  l 
0  ri  1,     ri  ,  ni  Z+,  1  i  m, 

(2) 

 
where Rs is the reliability of system, g, the set of constraint functions usually 
associated with system weight, volume and cost, r = (r1, r2, r3,…, rm), the vector of 
the component reliabilities for the system, n = (n1, n2, n3,…, nm), the vector of the 
redundancy allocation for the system (positive integer values), ri and ni the reliability 
and the number of components in the i-th subsystem, respectively, f(·), the objective 
function for the overall system reliability, l, the resource limitation, and m the number 
of subsystems. Our goal is to determine the number of components, and the 
components’ reliability in each system, to maximize the overall system reliability. 
The problem belongs to the category of constrained nonlinear mixed-integer 
optimization problems.  

2.1 Overspeed protection system for a gas turbine 

The benchmark considered is an overspeed protection system for a gas turbine [9-11] 
illustrated in Fig. 1.  Overspeed detection is continuously provided by the electrical 
and mechanical systems. When overspeed occurs, it is necessary to cut off the fuel 
supply using control valves [9]. For this purpose, 4 control valves (V1–V4) must close. 
The control system is modeled as a 4-stage series system. 

 
Fig. 1: Representation for the overspeed protection system of a gas turbine. 

This problem is formulated as the following mixed-integer nonlinear programming 
problem [12]: 
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where 1  ni  10, ni  Z+, where Z+ is the space discrete of positive integers, 
0.5  ri  1-10-6, ri  , vi, the volume of each component in subsystem i, V, the 
upper limit on the sum of the subsystems’ products of volume and weight, C, is the 

upper limit on the system cost,   ib
iii rTarC )ln(/)(   is the cost of each component 

with reliability ri at subsystem I, T, the operating time during which the component 
must not fail, and W, the upper limit on the weight of the system. The input 
parameters of the overspeed protection system for a gas turbine are shown in Tab. 1. 
 

Stage 105 ∙ai bi vi wi V C W T 
1 1.0 1.5 1 6 250 400 500 1000 h 
2 2.3 1.5 2 6     
3 0.3 1.5 3 8     
4 2.3 1.5 2 7     

Table 1: Data of overspeed protection system. 

3 Optimization Algorithms 

This section describes the proposed ICSO. First, the fundamentals of the CSO are 
briefly introduced, and finally the mechanisms of the proposed ICSO are provided. 

3.1 Cat Swarm Optimization (CSO) algorithm 

CSO is generated by observing the behavior of cats, and is composed of two sub-
models by simulating the behavior of cats termed “seeking mode” and “tracing 
mode”.  
 The seeking model is used to model the cat during a period of resting but being 
alert-looking around its environment for its next move. Seeking mode has four 
essential factors: seeking memory pool (SMP), seeking range of the selected 
dimension (SRD), counts of dimension to change (CDC), and the self position 
consideration (SPC). The tracing mode is the sub-model for modeling the case of the 
cat when tracing targets. Once a cat goes into tracing mode, it moves according to its’ 
own velocities for every dimension. Every cat has its own position composed of D 
dimensions, velocities for each dimension, a fitness value representing the 
accommodation of the cat to the benchmark function, and a flag to identify whether 
the cat is in seeking mode or tracing mode. These two modes are dictated to join with 
each other by a mixture ratio MR. The final solution would be the best position of one 
of the cats. Both seeking and tracing steps can be found in [7,8,13].  
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3.2 Improved Cat Swarm Optimization (ICSO) algorithm 

Classical CSO as many evolutionary and swarm intelligence approaches can suffer 
from the problems of premature convergence and stagnation [14-16]. The behavior of 
CSO is influenced by both seeking and tracing modes and by the control parameters 
values, where different parameter settings will lead to different performances.  
 According to the CSO algorithm, if TSRate = 0 seeking mode is configured, 
when TSRate = 1 all cats are on tracing mode. The proposed ICSO employs the tuning 
procedure of TSRate (maximization problem) mentioned in the sequence: 
 If mean(fcurrent) > mean(fold) then 
       TSRateminimum = 0.1;   
       TSRatemaximum = 0.4; 
 Else   
       TSRateminimum = 0.5;   
       TSRatemaximum = 0.9; 
 End 
 TSRate = TSRateminimum + r*( TSRatemaximum - TSRateminimum) 
 In the procedure presented above, r is a random number generated with uniform 
distribution in range [0,1], mean(fcurrent) is the mean value of objective function cats’ 
population in the current iteration (it), and mean(fold) is the mean value of objective 
function of cats’ population in the iteration (it-1). TSRateminimum and TSRatemaximum are 
the minimum and maximum values of the TSRate, respectively. In this paper, the 
values of TSRateminimum and TSRatemaximum were tuned by trial-and-error procedure. 

4 Simulation results and analysis 

Many reliability-redundancy optimization problems involve discrete variables, which 
are denoted by ni that represents the number of components in subsystem i. Any ni 
adjusted is a real number, and the most direct processing method is adopted here by 
transforming it into the nearest integer. In this work 30 independent runs and 30 
different initial trial solutions were selected to each method. The parameters setting 
for both CSO and ICSO are the population size, 90, maximum iteration number 
(itmax), 150, SMP, was set to N/2, SRD, 0.5, CDC, 4, and SPC, 1. The same number of  
function evaluations (13,500) was adopted as stopping criterium. Several variants in 
terms of the TSRate values were investigated (Tab. 2). 
 

CSO TSRate CSO TSRate 
(1) 0.1 (6) 0.6 
(2) 0.2 (7) 0.7 
(3) 0.3 (8) 0.8 
(4) 0.4 (9) 0.9 
(5) 0.5 (10) [0.1, 0.9] 

Table 2: CSO approach using different setups. CSO(10) represents that TSRate was 
randomly distributed on the whole interval [0.1, 0.9]. 

 Constraints (4)-(6) in the overspeed protection system for a gas turbine are 
handled using a penalty strategy. In this work, the penalty-based method proposed in 
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[9] was used for both CSO and ICSO approaches for infeasible solutions (constraint 
violation). A penalty value was defined to consider the constrained violation based on 
the procedure illustrated in [9], where the terms l are subtracted (maximization 
problem) from objective function f(r, n) if g(r, n) > 1. In terms of best result f(r, n), 
the solutions of ICSO are just slightly better than the solution found by CSO(1)-
CSO(9) for the overspeed protection system (Tab. 3). For the overspeed protection 
system (Tab. 4), ICSO has advantages in terms of solution quality (maximum value of 
f(r, n)) when compared to the literature results [9-11]. 

5 Conclusion 

In this paper, it was proposed an ICSO approach and a benchmark case has been 
carried out to show the feasibility of the proposed algorithm. From Tab. 3 and 4, it 
can be seen that the proposed ICSO is a promising technique for solving many 
reliability-redundancy optimization problems. Future work will consider extending 
the proposed ICSO to account for availability and multi-state systems in redundancy 
allocation problems. The proposed approach aims at identifying the whole Pareto-
optimal solution set for multi-objective reliability-redundancy optimization cases. 
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Optimization 

method 

f(r, n) 
TSRate Minimum 

(Worst) 
Mean 

Maximum 
(Best) 

Standard 
Deviation 

0.1 CSO(1) 0.969784 0.990187 0.999327 7.49e-03 
0.2 CSO(2) 0.980470 0.992840 0.999851 5.60e-03 
0.3 CSO(3) 0.970672 0.993755 0.999658 6.49e-03 
0.4 CSO(4) 0.981049 0.994355 0.999846 5.05e-03 
0.5 CSO(5) 0.978006 0.994733 0.999737 5.11e-03 
0.6 CSO(6) 0.978905 0.994234 0.999532 5.02e-03 
0.7 CSO(7) 0.980207 0.993846 0.999870 6.23e-03 
0.8 CSO(8) 0.987490 0.995421 0.999775 3.95e-03 
0.9 CSO(9) 0.985095 0.995760 0.999495 3.83e-03 

[0.1, 0.9] CSO(10) 0.986826 0.995228 0.999716 3.56e-03 
Algorithm 
Section 3.2 

ICSO 0.997602 0.998991 0.999954 8.05e-04 

Table 3: Convergence results of f(r, n) (30 runs) for the overspeed protection 
system using both CSO and ICSO approaches. 

Parameter Dhingra [10] Yokota et al. [11] Chen [9] This work (ICSO) 
f(r, n) 0.99961 0.999468 0.999942 0.999954 

n1 6 3 5 5 
n2 6 6 5 5 
n3 3 3 5 4 
n5 5 5 5 6 
r1 0.81604 0.965593 0.903800 0.901654 
r2 0.80309 0.760592 0.874992 0.888218 
r3 0.98364 0.972646 0.919898 0.948074 
r4 0.80373 0.804660 0.890609 0.849962 

MPI (%) 88.6333% 91.6673% 23.5689% - 
Slack (g1) 65 92 50 55 
Slack (g2) 0.064 -70.733576 0.002152 0.009347 
Slack (g3) 4.348 127.583189 28.803701 15.363463 

         Note: Slack is the unused resources.      )other(1/)other(ICSO(%) sss RRRMPI   

Table 4: Comparison of result for the overspeed protection system using ICSO 
considering the results available in the literature. 
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