
An application of the temporal difference

algorithm to the truck backer-upper problem

Christopher J. Gatti and Mark J. Embrechts

Rensselaer Polytechnic Institute
Dept. of Industrial and Systems Engineering

Troy, NY - USA

Abstract. We use a reinforcement learning approach to learn a real
world control problem, the truck backer-upper problem. In this problem,
a tractor trailer truck must be backed into a loading dock from an arbi-
trary location and orientation. Our approach uses the temporal difference
algorithm using a neural network as the value function approximator. The
novelty of this work is the simplicity of our implementation, yet it is able
to successfully back the truck into the loading dock from random initial
locations and orientations.

1 Introduction

Reinforcement learning is an approach to solving sequential decision making
problems that is based on the process of trial and error learning. This type of
learning has been used in various types of benchmark control problems, including
the mountain car problem [5] and the pole swing-up task [1]. However, aside
from a few notable examples (i.e., helicopter control [6]), its application in real
world control problems is rather limited.

In this work, we apply reinforcement learning to the truck backer-upper
(TBU) problem. In this problem, a tractor trailer truck must be backed into a
loading dock by controlling the orientation of the wheels of the truck cab. This
problem has been considered in other works, albeit using slightly different or
more complex approaches. Nguyen and Widrow [7, 8] used a neural network-
based self-learning control system approach to back up a single trailer truck,
though this was not based on a reinforcement learning approach. Vollbrecht
[11] used a complex hierarchical reinforcement learning approach based state
space partitioning using a kd-trie and a tabular Q-function to learn how to back
up a single trailer truck. Our work is novel because we use a straight-forward
and simplistic reinforcement learning approach to learn the truck backer-upper
problems. More specifically, we use TD(λ) and a neural network for the function
approximator to successfully learn this domain. Note that the purpose of this
work was not to try to beat the state of the art for the TBU problem, but rather
to determine if a relatively simple approach could be used.

2 Truck-backer upper problem

The goal of the truck backer-upper problem is to learn a control system that
is capable of backing up a tractor trailer truck from an arbitrary location and

135

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

orientation/configuration to a loading dock (Figure 1).

Cab

Trailer

(0, 0)
θT

θC

(x, y)

Loading dock

Fig. 1: The state of the truck is defined by the rear trailer position (x,y), the
trailer angle θT , and the cab angle θC . The goal of the problem is to back the
truck into the loading dock at (x, y) = (0, 0) where θT = 0.

The dynamics of the trailer truck were based on those from [9]. The position
of the rear of the trailer was defined by its horizontal and vertical coordinates,
x and y (meters), respectively. The orientation of the trailer with respect to a
horizontal axis was defined by θT , and the orientation of the cab with respect to
the trailer was defined by θC (radians). The state of the trailer st at any time
step t was characterized by these four state variables: st = (x, y, θT , θC). The
state update equations are as follows:

x′ = x−B · cos(θT)
y′ = y −B · sin(θT)

θ′T = θT − arcsin
(
A · sin(θC)

LT

)

θ′C = θC + arcsin

(
v · sin(u)
LC + LT

)

where A = v · cos(u), B = A · cos(θC), v = 3, LT = 14 (tailer length), and
LC = 6 (cab length). The wheel angle relative to the cab angle is specified by
u (radians), and three discrete actions were allowed: u = {−1, 0, 1}. The truck
velocity was not taken into account as backing the trailer is assumed to be a
slow process. The truck was restricted to the domain boundaries x = [0, 200]
and y = [−100, 100]. The goal of this problem was to have the trailer positioned
at the loading dock with a specific orientation: x = 0, y = 0, and θT = 0.

3 Reinforcement learning implementation

The temporal difference algorithm TD(λ) [10] was used to train a neural network
to learn the value function V (st, at) that approximates the value of being in
state st and taking action at at time t. The work described herein assumes some

136

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

knowledge about reinforcement learning using a neural network, and the reader
is directed to [2, 3] for additional background information.

3.1 Neural network

The neural network is used to evaluate the state value function V (st, at) by
propagating the current state st = [x, y, θT , θC] through the network. The pri-
mary advantage of using a neural network is its ability to generalize to unvisited
states, and this becomes essential in large or continuous state spaces. This net-
work used four input nodes (for the four state variables), 51 hidden nodes, and
three output nodes, which correspond to the three available actions. The x and
y components of the state vector were scaled over [−3, 3] based on the bound-
aries of the domain in order to put these state values on approximately the same
scale as θT and θC . The hidden layer used a hyperbolic tangent (tanh) transfer
function and the output layer used a linear transfer function. Network weights
were initialized by sampling from U [−0.1, 0.1].

The learning rates α of the network were set individually by layer follow-
ing the approach described in [4]. Input-hidden (αhi) and hidden-output (αoh)
learning rates are initially set to 1/

√
n where n is the number of nodes in the

preceding layer, and αoh is then divided by
√
3. All learning rates are divided

by 1/(4·φ)
min(α) , where φ = 500 is a scale factor that is problem dependent and is

related to the maximum number of time steps allowed. The resulting learning
rates were αhi ≈ 0.0031 and αoh = 0.0005.

3.2 TD(λ)

TD(λ) was used to train network weights at every time step t. The weight
updates have the general form of wt = wt + αgt where gt is a λ-discounted
running update over 0, . . . , t. The hidden-output layer (oh) and the input-hidden
layer (hi) updates are computed, respectively, as:

(gt)oh = λ (gt−1)oh + δoyh (gt)hi = λ (gt−1)hi + δhzi

where:
δo = f ′(vo) eo δh = f ′(vh)

∑
o

eowoh

The quantities f ′(vo) and f ′(vh) are the transfer function derivatives evaluated
at the induced local fields vo =

∑
h wohyh and vh =

∑
i whizi, respectively,

where yh = tanh(vh) and zi is the value of input node i (all values are from time
t). At the beginning of each episode, all values of g are set to zero.

The error e at time t is a 3-element vector corresponding to the 3 output
nodes o:

eo =

{
rt+1 + γV (st+1, at+1)− V (st, at) if o = at

0 if o �= at

where γ = 0.975 is the next-state discount factor, rt+1 is the reward at time
t+ 1, and at and at+1 are the actions taken at times t and t+ 1.

137

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

3.3 Training

Training consisted of having the agent attempt to learn the TBU domain over
40,000 episodes, where an episode consists of one attempt at backing the truck
into the loading dock. For each episode, the starting state of the trailer was ran-
domly initialized such that the vertical position y was sampled from U [−10, 10],
and the trailer angle θT was sampled from U [−1.5, 1.5]. The initial horizontal
position x was set to 160, and the cab angle θC was set to 0.0. This amounts to
the trailer having a random vertical position and a random orientation. During
training, an ε-greedy action selection policy was used (ε = 0.95), where exploita-
tive actions are taken 100 · ε% of the time, and explorative (random) actions are
taken 100 · (1− ε)% of the time.

The goal of the problem was relaxed slightly such that the truck was con-
sidered to be at the loading dock in the correctly orientation if

√
x2 + y2 ≤ 3

and θT ≤ 0.1. When the trailer satisfied this condition, a reward of r = +10
was provided to the agent. When the truck was outside of this region, a reward
was provided to the agent based on the trailer position and orientation, which
took the form of: r = −0.03 · x0.6 − 0.002 · |y|1.2 − 0.1 · |θT | + 0.4. An episode
was terminated if the cab jack-knifed (θC > π

2), if the trailer angle became large
(θT > 4π), or if the front of the cab or the rear of the trailer exited the domain
boundaries. In any of these cases, a penalty of r = −0.1 was provided to the
agent, and the number of time steps in these episodes was set to the maximum
number of time steps (Tmax = 300). Episodes could also be terminated if the
truck was successfully backed into the loading dock or if the Tmax was reached.

Training performance was assessed using two types of metrics. The first
metric was a moving average of the number of time steps in each episode using a
500-episode moving window. The second metric were moving proportions of the
episode termination types, also using a 500-episode moving window. Empirical
training convergence was assessed using three criteria that looked at the moving
proportion of when the goal was reached: 1) the level must have been greater
than 0.95; 2) the range must have been less than 0.01; and 3) the absolute value
of the slope must have been less than 1× 10−6.

4 Results

The empirical convergence criteria were satisfied in 27,600 episode (Figure 2).
The level, range, and slope of the moving proportion of reaching the goal was
0.992, 0.01, and −8.66 × 10−6, respectively. At convergence, the 500-episode
moving average of the number of time steps to the loading dock was 71.26.
Figure 3 shows example trajectories of the truck backing into the loading dock
from various starting locations and orientations. During these evaluations, a
pure exploitative action selection policy was used (ε = 1.0).

138

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

0 10000 20000 30000 40000

Training performance

T
im

e
st

ep
s

0
15

0
30

0

0 10000 20000 30000 40000

Episode termination proportions

Episode

P
ro

po
rt

io
n

0
0.

5
1

Exited domain
Angle violation
Reached goal

Fig. 2: Performance during training. The top plot shows the 500-episode moving
average of the number of time steps per episode. The bottom plot shows the
moving proportions of three termination types (termination types not shown
were negligible).

0 50 100 150 200

−
10

0
−

50
0

50
10

0

x

y

0 50 100 150 200

−
10

0
−

50
0

50
10

0

x

y

0 50 100 150 200

−
10

0
−

50
0

50
10

0

x

y

Fig. 3: Example test trajectories after training from random starting locations
and orientations. The truck is depicted by the hinged lines, and the goal is
indicated by the star located at (0,0).

5 Discussion

This work successfully applied one of the basic reinforcement learning algo-
rithms to a real world control problem using a small neural network and common
training procedures. This problem had some simplifications for the initial po-
sition/orientation constraints, though this problem is still general enough to be
considered realistic such that the initial vertical position of the truck and its
orientation were sampled over relatively wide ranges.

To further increase the accuracy and generalizability of this problem, a se-

139

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

quential training procedure may be required. Such a procedure would begin with
a training scheme as described here to seed future training runs that may have a
stricter goal threshold or looser initial conditions. Training converged at 27,600
episodes, and this is admittedly an unrealistic number of trials for a real world
implementation to perform. However, the implementation in this work could be
used as an in silico training scheme, which could then be ported to a real truck
to refine its real world performance. Additionally, other reinforcement learning
algorithms, such as Q-learning [10] may learn this task more efficiently.

The parameters and settings used in this implementation were based on
those generally used with TD(λ) and neural networks, and some trial and error
was required to find appropriate settings. These parameters largely include the
structure of the neural network, learning rates α, ε, λ, and γ, and it is likely
that there are more optimal settings for this task. The parameters used herein
are relatively robust, however, slight modifications of these parameters would
occasionally result in learning runs that did not empirically converge. Exploring
parameter subregions in which learning converges more rigorously is the focus
of ongoing work.

References

[1] K. Doya, Reinforcement learning in continuous time and space, Neural Computation, vol.
12, pp. 219–245.

[2] C. J. Gatti, J. D. Linton, and M. J. Embrechts. A brief tutorial on reinforcement learning:
The game of Chung Toi. In Proceedings of the 19th European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning, 2011.

[3] C. J. Gatti and M. J. Embrechts. Reinforcement Learning with Neural Networks: Tricks
of the trade. In P. Georgieva, L. Mihayolva, and L. Jain (eds.), Advances in Intelligent
Signal Processing and Data Mining, pp. 275–310, Springer-Verlag, 2012.

[4] C. J. Gatti, M. J. Embrechts, and J. D. Linton. An empirical analysis of reinforcement
learning using design of experiments. In Proceedings of the 21st European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learning, 2013.

[5] A. W. Moore, Efficient memory-based learning for robot control. PhD Thesis, University
of Cambridge, 1990.

[6] A. Y. Ng, H. J. Kim, M. I. Jordan, and S. Sastry. Inverted autonomous helicopter flight
via reinforcement learning. In International Symposium on Experimental Robotics, MIT
Press, 2004.

[7] D. Nguyen and B. Widrow, Neural networks for self-learning control systems, IEEE Con-
trol Systems Magazine, pp. 18–23, 1990.

[8] D. Nguyen and B. Widrow, The truck backer-upper: An example of self-learning in neural
networks. In W. T. Miller, R. S. and P. J. Werbos, editors, Neural Networks for Control,
MIT Press, 1990.

[9] M. Schoenauer and E. Ronald, Neuro-genetic truck backer-upper controller. In Proceed-
ings of the 1st IEEE Conference on Evolutionary Computation, vol. 2, pp. 720–723,
1994.

[10] R. S. Sutton and A. G. Barto. Reinforcement Learning. MIT Press, 1998.

[11] H. Vollbrecht, Hierarchical reinforcement learning in continuous state spaces. PhD Thesis,
University of Ulm, 2003.

140

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

