
Spiking AGREL

Davide Zambrano1, Jaldert Rombouts2, Cecilia Laschi1, and Sander Bohte2
1 The BioRobotics Institute, Scuola Superiore Sant’Anna, Italy

2 CWI, Amsterdam, The Netherlands

Abstract. Spiking neural networks are characterised by the spiking neu-
ron models they use and how these spiking neurons process information
communicated through spikes – the neural code. We demonstrate a plau-
sible spiking neural network based on Spike Response Models and predic-
tive spike-coding. When combined with a plausible reinforcement learning
strategy – Attention Gated REinforcement Learning (AGREL), we show
that such predictive spiking neural networks can compute non-linear map-
pings, including XOR. Our spiking AGREL achieves similar performance
as standard AGREL, with much more efficient neural coding.

1 Introduction

Spiking neural networks are characterised by the spiking neuron models they
use and how these spiking neurons process information communicated through
spikes – the neural code. Ideally, the spiking neuron models and associated
neural code are biologically plausible, and neural computation in such networks
should offer both competitive performance for pattern recognition as well as
insights into the workings of real biological neural networks.

In this paper, we present a plausible spiking neural network based on Spike
Response Models and predictive spike-coding. When combined with a plausi-
ble reinforcement learning strategy – Attention Gated REinforcement Learning
(AGREL) [1, 2], we show that for the first time, such spiking neural networks
based on predictive spike-coding can compute non-linear mapping, including
XOR. Related work, like [3, 4], only computes using a single layer of spiking
neurons, and hence cannot compute non-linear mappings. Spiking neural net-
works based on spike-time coding, like [5, 6] can compute non-linear functions,
but such schemes are hard to extend to time-continuous online computation.

In predictive spike-coding [7, 8, 9, 10], spiking neurons approximate an analog
Artificial Neural Network (ANN) that operates in continuous time: the analog
time-continuous signals that neurons in an ANN communicate, are approxi-
mated as a sum of spike-triggered kernels. The main advantage of such an
approximate neural coding scheme is that it vastly reduces the bandwidth re-
quired to communicate ongoing neural activations. For large and deep neural
networks, neural communication dominates the computational complexity [11],
and efficient approximations are crucial for extending deep learning approaches
to time-continuous operation, e.g. for video processing and dynamic control.

The next section describes the spiking neuron model framework, the network
architecture and the reinforcement learning strategy used. Then, the simula-
tion results on two non-linear mapping problems demonstrate the efficiency gain
obtained with respect to the baseline results of a non-spiking network as a com-
parison among different threshold adaptation mechanisms.

17

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

a

500 600 700 800 900 1000 1100
0

0.5

1

1.5

2

2.5

3

3.5

4

time (ms)

si
gn

al

spikes
signal y(t)
approx. signal y(t)

output spike

input spikes

u

ε(t)

0 1 2 3 4 5 6 7 8 9 10

signal u
0

10

20

30

40

50

60

ra
te

 cb

rate

Figure 1: (a) Example of signal approximation with predictive spike-coding. (b)
Spike Response Model. (c) Effective transfer function with multiplicative adaptation.
Purple: firing rate as function of input current, blue: effective adapted threshold ϑ(t).

2 Feedforward Artificial Neural Networks

A standard neural network model computes the activation of each neuron j as
a function of the weighted sum of inputs originating from other neurons i:

xj =
∑

i
wijyi yj = F (xj) ,

A standard fully connected feedforward neural network is defined for input layer
I, hidden layer J , and output layer K, populated with neurons i, j and k. A
bias neuron is also added on each layer with its own weight w0j . The a-cyclical
neural network thus described does not include a notion of time. A continuous
time computation can be achieved in a time-sliced manner: for each time-slice
∆t, an input vector xi(t) is presented as input in the network, and the output
vector yk(t) is computed through the network.

2.1 Predictive Spike-Coding

In predictive spike-coding, we approximate a (positive) continuous time signal
y(t) as a sum of kernels ε(t), shifted by respective spike times ti:

y(t) ≈ ŷ(t) =
∑

ti
ε(t− ti), (1)

where ε(t) is usually modeled as an alpha-function [12]. An example of such
predictive coding is shown in Fig. 1a (and example alpha-functions ε(t) in
Fig 1b). The greedy approximation ŷ(t) can be computed by straightforward
thresholding, for example by tracking the difference z(t) = y(t) − ŷ(t). When
this difference exceeds a threshold value ϑ, a spike ti is generated, and a kernel
ε(t− ti) is subtracted from the estimate ŷ(t):

z(t) = y(t)− ŷ(t) ti = t if z(t) > ϑ

If we allow the threshold ϑ to be dynamic, ϑ(t), the amount of input needed
to elicit a spike is effectively changed. With such behavior, adaptive predictive
spike-coding computes a scaled sum of kernels:

18

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

ŷ(t) =
∑

ti
ϑ(ti)ε(t− ti) (2)

A number of recent papers have noted that such a greedy approximation mech-
anism mimics the behaviour of real spiking neurons [7, 8, 9, 10].

Spike Response Models (SRM). The computation of z(t) naturally maps to
the Spike Response Model formulation of spiking neurons [12]:

uj(t) =
∑

i

∑
ti
wijε(t− ti)−

∑
tj
η(t− tj) tj = t if uj(t) > ϑ,

where uj(t) describes the membrane potential of a neuron j, which is computed
as the (weighted) sum of post-synaptic responses ε(t) each triggered by pre-
synaptic spikes ti. From this, refractory responses η(t) are subtracted, each
triggered by spiking events tj . As illustrated in Fig. 1b, in an SRM, a spike
is triggered when u(t) crosses a threshold ϑ from below. Predictive coding is
recovered when we set ε(t) to (low-pass filtered) η(t).

While the SRM as described above is a relatively crude approximation to real
spiking neurons, a substantially improved fit can be obtained when the threshold
ϑ is also treated as a dynamic quantity, e.g.:

ϑ(t) = ϑ0 +
∑

tj
γ(t− tj),

where γ(t) is a kernel with exponential or power-law decay [13]; the refractory
response η(t − tj) is then also scaled by the threshold, ϑ(tj) [9]. In [9], it was
shown that the correspondence with real spiking neurons can be increased by
including a multiplicative dynamic threshold ϑ(t):

ϑ(t) = ϑ0 +
∑

tj
ϑ(tj)γ(t− tj).

A multiplicative spike-triggered threshold adaptation function models fast
spike-triggered adaptation processes that maximize information transmission [9].
Importantly for neural networks, when interpreted as predictive spike-coding, [9]
showed that such predictive spike-coding efficiently encode neural signals over
a vast dynamic range. Threshold adaptation thus addresses the problem that
simple fixed-threshold predictive spike-coding implicitly requires that the signal
range for any particular neuron is proportional to the threshold ϑ. Note also
that in such Spike Response Models, the transfer-function is effectively rectified
linear, as, rather than with a firing rate, the sum of spike-triggered kernels ŷ(t)
is taken as the neural code [9] (Fig 1c).

2.2 Non-linear Plausible Reinforcement Learning: AGREL

Supervised learning algorithms like error-backpropagation can tune the weights
in a standard multi-layer ANN to learn non-linear input-output mappings, like
the famous XOR problem. In nature, the “right” answer is usually not available,
and learning is often a form of Reinforcement Learning [14]. Roelfsema & Van
Ooyen [1] introduced AGREL as a biologically plausible algorithm for reinforce-
ment learning of direct reward. The AGREL network is shown in Fig. 2a: given

19

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

WTA

· · ·

· · ·

I

J

K

wij

wjk Wkj

I1
I2

K2

K1

t −→δa b
Figure 2: (a) AGREL network. (b) Actual neural processing for an example input-
output. Input current is continuously injected into the input neurons. After some time
(1st grey area), the controller computes the winning action-value neuron, and sets the
activity of the winning output neuron to 1, and that of the losing output neuron(s) to
0. Some time later (2nd grey area) reward is received and the reward error δ is sent into
the network for a brief period of time. Purple: predictive spike-coding approximation.

an input into a neural network, a value for each available action is computed by
the action-value neurons in layer K. A controller (e.g. in basal ganglia) then
stochastically selects one of these actions, biased by the expected value. The
winning action-value neuron’s activity is then set to 1, and this winning activity
is projected back to the hidden neurons weighted by weights Wkj (identical to
forward weights wjk). Given the selected action, a reward is then received and
a reward error is computed: the difference between the reward and the expected
value. Based on this reward error, the weights in the network, including those
in the hidden layer, can be updated in a biologically plausible local manner to
effectively carry out stochastic gradient descent. A time-continuous AGREL
computation is shown in Fig. 2b. Importantly, AGREL can learn non-linear
mappings like XOR, which require a hidden layer and neurons with a non-linear
transfer function.

Formally [2], the winning action-value neuron K has activation set to yK = 1;
each timestep, the output weights wjK and hidden weights wij are updated as:

∆wjK(t) ∝ δ(t)yK(t)yj(t) ∆wij(t) ∝ δ(t)yi(t)I+[yj(t)]wjKyK(t),

where I+(yj) is the derivative of a rectified linear unit (1 for yj > 0, 0 else).
Spiking AGREL. Given predictive spike-coding, spiking AGREL is an adap-

tation of AGREL. The input signal is injected as current into the SRM. The
output from the respective pre-synaptic neurons is then computed through pre-
dictive spike-coding: ŷ(t). This gives the following learning rules:

∆wjK(t) ∝ δ(t)yK(t)ŷj(t) ∆wij(t) ∝ δ(t)ŷi(t)I+[yj(t)]wjK ŷK(t).

The predictive-coding signal approximation to continuous-time AGREL problem
is illustrated in Fig. 2b as the purple line.

20

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

50 100 15030
40
50
60
70
80
90

100

Firing Rate (spikes/sec)

C
on

ve
rg

en
ce

 %

0 50 100 150

200

400

600

800

1000

1200

1400

Firing Rate (spikes/sec)
N

um
be

r
of

 e
po

ch
s f

or
 c

on
ve

rg
en

ce

Fixed
Multiplicative Adpt
Additive Adpt
Baseline

Fixed
Multiplicative Adpt
Additive Adpt
Baseline

0

20

40

60

80

100

Threshold

R
ew

ar
d

%

Fixed
Multiplicative Adpt
Additive Adpt
Baseline

a b c

Figure 3: (a) XOR convergence rate. (b) Epochs required for convergence for the
XOR problem. (c) Rate of reward for learning IRIS dataset. In both problems, the
average firing rate in the spiking neural networks was varied either by setting the fixed
threshold value, or the Fp parameter for adapting spiking neurons.

3 Experiments

We evaluate the approximate spiking neural network on two non-linear prob-
lems: XOR and IRIS. For both problems, we computed the non-spiking AGREL
solution to these problems in a continuous time mode as a baseline. We then
compared this to spiking AGREL with the three types of dynamic threshold
described before: fixed, additive adaptive and multiplicative adaptive.

XOR. Two binary inputs are presented to the network. The first output
neuron fires when both inputs are equal (1, 1 or 0, 0). The second fires in the
other cases (0, 1 or 1, 0). Ten hidden layer neurons are used in this task. For
the adaptive thresholds, the resting threshold ϑ0 was set to 0.025, and γ(t)
decayed with power-law constant of β = −0.85 (after [13]), as Fp(t− ti+ 0.2)−β ,
and response kernels η(t) and ε(t) were modeled as exp(−t/20) and 1.45(1 −
exp(t/4)) exp(−t/20) respectively (time t in ms). A bias neuron has been added
for both the input and the hidden layer. Each threshold method was tested on
25 runs with randomly initialized weights. For each run, the four input pattern
were shown to the network for 2000 epochs. The convergence criterium was met
when 80% of the answers were correct in a time window of 100 epochs.

IRIS. The Iris data set is a classical non-linear mapping problem. The data
set contains 3 classes of 50 instances each, where each class refers to a type of Iris
plant. For this problem, the resting threshold ϑ0 was set to 0.2, with Fp set to
45 for additive and 2.5 for multiplicative threshold to obtain the same maximum
firing rate of 90 spikes/second for both spiking neuron models. Fig. 3c shows
the obtained reward after 1000 epochs divided by the maximum possible reward,
averaged over 20 runs.

Spiking AGREL was able to learn the non-linear mapping required for both
XOR and IRIS problems, with the multiplicative adaptation method achieving
performance similar to the baseline (Fig. 3)a,c; for XOR, higher firing rates
generally perform better than lower ones (Fig. 3a), while not having a significant
impact on convergence time (Fig. 3b).

21

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

4 Conclusion

We demonstrated how a spiking neural network with predictive spike-coding
can approximate a time-continuous ANN efficiently like in [9]. Importantly, we
showed that the resultant “spiking” AGREL can learn non-linear mappings as
well as AGREL, particularly with multiplicative adaptation. The latter effec-
tively fixes the spike-rate that a spiking neuron uses to communicate significant
signals, almost irrespective of the size of the signal. Thus, and in contrast to
spiking neurons with a fixed threshold, small signal values can be communicated
as well as large signals. We additionally demonstrated how adaptive predictive
spike-coding can be combined with a biologically plausible learning rule. In terms
of bandwidth used, spiking neurons potentially are much more efficient compared
to traditional ANN: communication is simplified by transmitting only one bit of
information every time-slice rather than an analog value. Additionally, weight
multiplications are only needed when a spike is received, saving tremendously
on computational complexity. Together, this makes predictive spike-coding in
spiking neural networks also highly suitable for scaling to large-scale simulations.

References

[1] P.R. Roelfsema and A. Ooyen. Attention-gated reinforcement learning of internal
representations for classification. Neural Computation, 17(10):2176–2214, 2005.

[2] J.O. Rombouts, A. van Ooyen, P.R. Roelfsema, and S.M. Bohte. Biologically
plausible multi-dimensional reinforcement learning in neural networks. In ICANN
2012, pages 443–450, Berlin, Heidelberg, 2012. Springer-Verlag.

[3] R. Gütig and H. Sompolinsky. The tempotron: a neuron that learns spike timing-
based decisions. Nature, 9(3):420–428, 2006.

[4] R. Urbanczik and W Senn. Reinforcement learning in populations of spiking
neurons. Nature neuroscience, 12(3):250–252, 2009.

[5] S.J. Thorpe and J. Gautrais. Rank order coding. Computational Neuroscience:
Trends in Research, 13:113–119, 1998.

[6] S.M. Bohte, J.N. Kok, and H. La Poutre. Error-backpropagation in temporally
encoded networks of spiking neurons. Neurocomputing, 48:17–38, 2002.

[7] S.M. Bohte and J.O. Rombouts. Fractionally Predictive Spiking Neurons. In NIPS
23, pages 253–261, 2010.

[8] M. Boerlin and S. Denève. Spike-based population coding and working memory.
PLoS computational biology, 7(2):e1001080, February 2011.

[9] S.M. Bohte. Efficient spike-coding with multiplicative adaptation in a spike re-
sponse model. In NIPS 25, pages 1844–1852, 2012.

[10] D. Chklovskii and D. Soudry. Neuronal spike generation mechanism as an over-
sampling, noise-shaping a-to-d converter. In NIPS 25, pages 512–520. 2012.

[11] L. Slazynski and S.M. Bohte. Streaming parallel gpu acceleration of large-scale
filter-based spiking neural networks. Network: Computation in Neural Systems,
23:183–211, 2012.

[12] W. Gerstner and W. Kistler. Spiking neuron models. 2002.
[13] C. Pozzorini, R. Naud, S. Mensi, and W. Gerstner. Temporal whitening by power-

law adaptation in neocortical neurons. Nature neuroscience, 2013.
[14] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. 1998.

22

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

