ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Improving the firefly algorithm through the
Barnes-Hut tree code

Kiril Ralinovski

Berlin Institute of Technology - Machine Learning Group
Marchstr. 23, Berlin, Germany

Abstract. The firefly algorithm is a nature-inspired meta-heuristic algo-
rithm that has a variety of applications such as multimodal optimization,
clustering and finding good solutions for NP-hard problems. The original
algorithm and modifications thereof have so far always calculated inter-
actions between all fireflies individually which leads to a complexity of
O(n2). In this paper we present a novel approach to reduce the complex-
ity to O(n-log(n)) in lower dimensions by using the Barnes-Hut tree code,
which is used for n-body simulations in physics. This is possible due to
the similar nature of both problems and requires only small modifications.

1 Introduction

Metaheuristic algorithms are often used in a variety of complex problems such
as non-convex optimization and NP-hard problems like the traveling salesman
problem. Parametric optimization can be used in almost every field - such as
economics, image compression and many more. An important class of meta-
heuristic algorithms are the so-called bioinspired algorithms, which take exam-
ples for solving these problems from nature. One such prominent algorithm is
the firefly algorithm proposed by Yang [12]. It imitates the flashing behaviour
of fireflies in order to attract mates. Its original purpose was to solve complex
multimodal optimization problems, but it has since then been further developed
and used for image thresholding [9], clustering [11], scheduling [7] [8] and many
others.

Research has been done to parallelize the algorithm and reduce its running time
[6], thus enabling it to use a higher number of fireflies. Some versions used
problem-specific knowledge in order to optimize it [5]. Papers have been written
on making parallel version of it that can run on graphical processors such as
CUDA [6] or improving the way how the fireflies move in order for them to find
a better solution [3] [10].

In this paper a novel approach is proposed to use the Barnes-hut tree code to
optimize the complexity of the algorithm from O(n?) to O(n - log(n)) in lower
dimensions.

2 Algorithms

2.1 The Firefly algortihm

The original firefly algorithm [12] relies on an idealized version of fireflies, which
are insects that use flashing patterns to communicate with each other. For a

153



ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

complete introduction to the algorithm including the optimization of hyperpa-
rameters please refer to [12]. The algorithm makes an idealized imitation of
fireflies. In order to achieve this a certain degree of abstraction is required. It
assumes that the fireflies in this environment are unisexual. That is to say that
all fireflies are attracted to each other.The stronger the glow of a firefly, the
more attractive it is. The brightness of the firefly is the function’s value of its
position.

The formula for the light intensity from one firefly to another is I = Ioe_'YTQ,
where r is the distance, v is the absorption coefficient and Iy was the original
light intensity. A more common notion to measure attractiveness is to use [
instead of I with g = 6()6”2. The absorption coefficient is due to the fact that
the air absorbs light and thus has greater influence over a greater distance. The
new position of the firefly is determined by x; = z; + 506*7@]‘ (xj —x;) + ae;. €
is a randomized vector filled with random values from a Gaussian distribution.
This adds an extra random factor to the movement of the fireflies. Alpha is a
constant factor that determines how much of an influence this randomness has.
The pseudo code is presented in Algorithm 1

Data: Objective function f(z), @ = (@1, ..., xq) "
Initialize a population of fireflies z; (i = 1, 2, ..., n);
Define light absorption coefficient;
while t <MazGeneration do
for i = 1 : n all n fireflies do
for j = 1 : i all n fireflies do
Light intensity I; at x; is determined by f(xi) ;
if I; > I; then
| Move firefly i towards j in all d dimensions
end
Attractiveness varies with distance r via expl[-r] ;
Evaluate new solutions and update light intensity;
end
end
Rank the fireflies and find the current best
end

Algorithm 1: Firefly algorithm

Calculating the distance between two fireflies can be done in several ways,

but the most appropriate way should be chosen in accordance to the problem.
For most problems the Euclidean distance should suffice.
We can see the similarities between the firefly algorithm and the n-body simu-
lation, where we iterate through all the bodies and calculate the forces between
them. There is one major difference between the two however - in the case of the
gravitational forces the same force acts on both bodies, but with opposite direc-
tions. Simulating the n-body problem is also more complex because it requires
algorithms for numerical integration, but this is not required in our variation of
the algorithm.

An example of using this algorithm is optimizing a function f(x). Given a
firefly x;, we set its light intensity I; = f(z;). After running for the set number of
steps, the algorithm returns the maxima that it found. It can easily be modified
to find minimas. Other modifications make it possible to use this algorithm for
clustering [11], image thresholding [9], clustering [11], scheduling [7] and much
more.

154



ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

2.2 Barnes-Hut Firefly

The Barnes-Hut simulation was invented by Josh Barnes and Piet Hut [1]. The
main idea of this algorithm is that large clusters of bodies that are far away
can be observed as one body and it will lead to almost the same result. As a
contribution of this paper we will apply the same notion to the firefly algorithm.
Thus there is no need to individually observe every firefly that is part of a large
cluster in the distance. We can also imagine that if we had a large amount of
light sources in the distance we would see them as a single source of light. It
has to be noted that there are several differences between the simulation of the
n-body problem and the firefly algorithm. In the former we calculate the acce-
laration and afterwards need to integrate to obtain the current velocity of the
body. This means that we also have to concern ourselves with selecting an ap-
propriate integration method. This is something that we are spared in the firefly
algorithm as the individual fireflies simply move and we are not concerned with
obeying any laws of physics accurately.

When dealing with 2-D simulation the space is divided up into squares,
whereas in a 3D simulation the space is divided up into cubes. Within a 2D
simulation every square can then be subdivided into 4 smaller squares of the
same size. In a 3D simulation every cube can be subdivided into 8 smaller cubes
of the same size. This can easily be represented within a tree structure and
can be extended to an arbitrary dimensionality d with 2% cells. This leads to
problems in higher dimensions.Each cell contains an estimated center of gravity
of all the bodies contained within it. The mass of this point is the sum of the
masses of all the bodies contained within it. An example of this structure can
be seen in Figure 1a and Figure 1b.

(a) A Barnes-Hut tree

- -E-

ui

(b) A Barnes-Hut tree

root

A 0 0
B 0 0 C

As we can see - the length of the sides of the cells decreases as the regions
become denser. Since the cells are either cells, cubes (or other shapes in higher
dimensions) they can be described by just two variables - an origin point and a
side length. It would be easier for our insertion method if we adoped the corner
with the smallest value. That would be the bottom left corner in 2D space. And

155



ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

if we are using a left handed orientation the front bottom left corner in 3D space.
This will allow us to automatically be able to determine in which of the child
cells the current body belongs, regardless of the dimensionality of the problem.
This is applied in Algorithm 2. The firefly structure as shown in Figure 2
represents a single firefly, which has a position pos; in all d dimensions and a
light intensity, which is dependant on its position. Our cells will be represented
by the node class/structure. nodes represents all of its children nodes, whereas
pos represents the left corner of the d-dimensional hypercube and len is the
length of its sides. The innerFirefly object is either a firefly if the cell is a leaf,
or the combination of all of the fireflies in its child cells. The count parameter
represents the total number of nodes that the subtree starting from this node
has. When creating new cells, we have to keep in mind that their side lengths
have to be twice as small as those of their parents

Fig. 22 UML
node
firefly
+ nodes: list
+ pos : double[d] ke— s+ len: double
+ lightintensity: double + count: int
+ pos: double[d]

Algorithm 3 is the modified Barnes-Hut algorithm and calculates the changes
in the firefly’s position. It differs from the original algorithm in one key aspect.
The firefly only moves towards fireflies that are more attractive than itself or
towards groups whose mean light intensity is larger than its own. This is be-
cause we don’t want the fireflies to fly towards the nearest largest clusters, but
towards clusters who have larger values in general.

Input: firefly f, node root
if root is empty then
| root.innerFirefly := body
end
else
if root has children then
pos; := f.pos; > root.pos; + root.len ;
insert(root.nodespos) ;
end
if root has no children then
posl; := body.pos; > root.pos; + root.len ;
pos2; := root.body.pos; > root.pos; + root.len ;
insert(root.nodespos1, f) 3
insert(root.nodesy 52, root.innerFirefly) ;

Algorithm 2: insert Function

156



ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Input: node root, firefly f
if root has no children AND root.innerFirefly. lightIntensity;f.lightIntensity then

2
— e
‘ ace = fBge i . (root.innerFirefly.pos — f.pos) + ae;
end
if root has children then
i root.len
if root.innerFirefly.pos— f.pos < 0.5 AND
root.innerFirefly.lightIntensity ) )
Py > f.lightIntensity ;hen
—~r2.
‘ acc = B - root.innerFirefly.lightIntensity - e | iJ - (root.innerFirefly.pos — f.pos) + ae;

end
else
| acc = ¥, traverse(root.nodes;, firefly)
end
end
return acc ;

Algorithm 3: Get Position Changes

3 Results

5 .
£ 6 £
< =
=
1
1
k)
2
DD 260 460 Eéﬂ Eéﬂ . DD 260 460 ED‘D BD‘D WD‘DD 12‘DD
Murnber of Fireflies Murnber of Fireflies
(a) Minimum Found (b) Computation time

Fig. 3: Test results. Standard Firefly algorithm(red), Barnes-Hut Firefly(blue)

In order to test the efficiency of the new version of the algorithm we will try to
find the minimum of a function and then compare its running time and found
solutions to the original algorithm. In this case the Griewank function was

chosen. It is defined by the function f(z) = 2?21 %—H cos(%)—i—l, where d is
the number of dimensions and the search domain is defined by —600 < x; < 600.
In our case we chose to test it in 3 dimensions. The goal of this paper was to
compare how the new version of the algorithm fares against the original one.
This is why no optimization of the hyper-parameters was attempted and the
values used were = 1 and v = 0.01. The test programs were written in C++
and all tests were run on a 2.00 Ghz Intel Core Duo. Firstly we investigate
for a different count of fireflies - n=32,64,128,256,512 and 1024. The tests for
each individual count were repeated 100 times and the mean time and mean
minimum found was then averaged. As shown in Figure 3a the Barnes-Hut
Firefly underperforms slightly with a smaller number of fireflies, but it becomes
almost equal with the original version with n > 256. But the real pay-off can be
seen in the time it takes the algorithm to finish as shown in Figure 3b. It is only
slightly slower for n=32, but then becomes drastically quicker as the number

157



ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

of fireflies increases. The algorithm becomes inefficient as the dimensionality
grows, due to the exponential number of children nodes and the fact that most
nodes are in a relatively low level of the tree. Another practical issue is the high
memory use due to the large number of children nodes. For practical purposes
it should be used for problems with a dimensionality less than 8.

4 Conclusion

The proposed Barnes-hut Firefly algorithm has a much quicker running time
without suffering a loss in quality. This jump in performance can allow us to
handle big data much more efficiently and will allow us to tackle larger problems.
Our nearly proposed version can be parallelized just as simply as the original
algorithm. It is also possible to extend it by utilizing different tree structures
such as k-d trees or metric trees.

References

[1] Josh Barnes & Piet Hut A hierarchical O(N log N) force-calculation algorithm, Nature
324, 446 - 449 (04 December 1986); doi:10.1038/324446a0

[2] Martin Burtscher, Keshav Pingali An Efficient CUDA Implementation of the Tree-Based
Barnes Hut n-Body Algorithm, GPU Computing Gems Emerald Edition, pp. 75-92

[3] L. dos Santos Coelho, D.L de Andrade Bernert, V.C. Mariani, A chaotic firefly algorithm
applied to reliability-redundancy optimization, 2011 IEEE Congress on Evolutionary Com-
putation (CEC)

[4] Ananth Y. Grama, Vipin Kumar and Ahmed Sameh,Scalable Parallel Formulations of the
Barnes-hut Method for n-Body simulations, Deparment of Computer Science, University
of Minnesota, Minneapolis, MN 55455

. Falcon, , M. meida , A. Nayak, Fault identification wit inary adaptive fireflies

5] R. Fal M. Almeida , A. Nayak, Fault identificati ith bi daptive firefli
in parallel and distributed systems, 2011 IEEE Congress on Evolutionary Computation
(CEC), Pages 1359 — 1366

[6] A.V.Husselmann ,K.A. Hawick, Parallel Parametric Optimisation with Firefly Algorithms
on Graphical Processing Units, Proc. Int. Conf. on Genetic and Evolutionary Methods

[7] U. Hnig , A Firefly Algorithm-based Approach for Scheduling Task Graphs in Homoge-
neous Systems, DOI: 10.2316/P.2010.724-033

[8] M.K. Marichelvam, T. Prabaharan , X.S. Yang, A Discrete Firefly Algorithm for the
Multi-Objective Hybrid Flowshop Scheduling Problems, IEEE Transactions on Evolu-
tionary Computation, Issue 99

[9] Ming-Huwi Horng, Ren-Jean Liou Multilevel minimum cross entropy threshold selection
based on the firefly algorithm, Expert Systems with Applications, Volume 38, Issue 12,
Pages 1480514811

[10] B. Rampriya; K. Mahadevan ;S. Kannan,Unit commitment in deregulated power system
using Lagrangian firefly algorithm, 2010 IEEE International Conference on Communica-
tion Control and Computing Technologies (ICCCCT)

[11] J. Senthilnath, S.N. Omkar, V. Mani Clustering using firefly algorithm: Performance
study, Swarm and Evolutionary Computation, Volume 1, Issue 3, Pages 164 171

[12] X.-S. Yang, Firefly algorithms for multimodal optimiza-tion, in: Stochastic Algo-
rithms: Foundations and Applications, SAGA 2009,Lecture Notes in Computer Sciences,
Vol.5792, pp.169—178 (2009)

158





