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Abstract. In a previous work, we proposed an informed Non-negative
Matrix Factorization (NMF) with a specific parametrization which involves
constraints about some known components of the factorization. In this
paper we extend the above work by adding some information provided by
a physical dispersion model. In particular, we derive a special structure
of one of the factorizing matrices, which provides a better initialization
of the NMF procedure. Experiments on simulated mixtures of particulate
matter sources show that our new approach outperforms both our previous
one and the state-of-the-art NMF methods.

1 Introduction

Source apportionment consists of estimating which particulate matter sources
are present in the ambient air, with their relative concentrations. A source is
fully characterized by a profile which consists of m chemical species proportions
(expressed in ng/ng). Usually, several, say n, data samples are collected from
a chemical sampler and can be written as mixtures of p profiles, with different
concentrations (expressed in ng/m3). Mathematically, if we respectively denote
by X, G, and F the non-negative n×m data matrix, n× p contribution matrix,
and p×m profile matrix, the collected data read

X ≈ G · F. (1)

G and F are usually unknown and estimating them from X is a Blind Source
Separation (BSS) problem [1], which can be solved, e.g., by Non-negative Ma-
trix Factorization (NMF) [1, Ch. 13]. NMF was massively investigated since the
pioneering works in [2, 3]. Most methods consist of minimizing a dissimilarity
measure (see [4] for examples of such measures) between X and G ·F . However,
[3] and its extensions are very sensitive to the matrix initialization, and more-
over the convergence to a stationary point is not guaranteed, especially if some
components of F or G are zero. To tackle this issue, adding assumptions [5] or
initializing NMF with the output of another BSS methods [6] were introduced.

Moreover, when applied to real pollution source data, the performance of
the above classical NMF methods is inconsistent [7]. Fortunately, in source
apportionment, some partial knowledge on the matrices may be available. In
our recent work [4], we proposed an informed NMF method where some known
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entries of F were integrated in NMF as constraints, thus providing an approach
in between BSS and regression (i.e., where F is fully known).

In this paper, we propose to incorporate additional knowledge in the ma-
trix G. In particular, by using a physical dispersion model of the particulate
matter [8, 9], we obtain a reduced structure of the contribution matrix G which
allows to exclude some sources at some sampling instances (i.e., we control the
sparseness of G). This structure is then seen as constraints in the NMF proce-
dure. Using dispersion models for inverse problems was previously investigated
in, e.g., [8, 10, 11]. In particular, the authors in [10, 11] considered the convolu-
tive propagation of a unique source in a fluid—i.e., atmosphere or water—while
we here introduce a non-convolutive model for multiple sources.

Given our newly proposed structure and an inital matrix F provided by ex-
perts, we propose a new NMF initialization based on quadratic programming.
This configuration yields a better separation performance when compared to
blind and informed NMF, as shown in this paper on simulated mixtures of in-
dustrial and natural source profiles. The remainder of the paper is organized as
follows. The considered problem, the dispersion model, and the associated defi-
nitions and assumptions are given in Section 2. We introduce the incorporation
of the physical model in the NMF intialization in Section 3. The performance of
our method is provided in Section 4 while the conclusion is outlined in Section 5.

2 Modelization, definitions, and assumptions
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Fig. 1: Structure of the proposed informed NMF method.

In this paper, we assume that a chemical sampler—located at the position
ξs � (xs, ys, zs)—regularly estimates m chemical species concentrations. They
are collected in a n × m data matrix X defined in Eq. (1) together with a
weight matrix W derived from the known uncertainty measures provided by a
chemical expert [4]. These species may have a natural origin—they can be due
to, e.g., sea salts—or an industrial one, i.e, they may come from chemical plants
or steel factories. In particular, we assume to know the locations—denoted
ξl � (xl, yl, zl) with 1 ≤ l ≤ q—of the q industrial sites (q ≤ p) which emit
particles in the atmosphere and which are in the neighbourhood of the sampler.

Our objective consists of accurately estimating F and G, defined in Eq. (1).
Figure 1 describes the successive steps of the whole method. The stages on
the left part of the plot are novel and aim to optimize the structure and the
initialization of the informed NMF. The latter was introduced in [4], and its
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iterative solution is based on a special parametrization which reads

F = ΦF ◦ΩF + (1 −ΩF ) ◦ΔF, (2)

where ΩF is a mask describing the positions of the known values of F , ΦF is
the matrix of known values, ΔF is the matrix of the free components of F , and
◦ denotes the componentwise product. The iterative updates rules [4]—recalled
below for the sake of clarity—are defined for a β-divergence and read:

�F k+1 ←�F k ◦ (1−ΩF ) ◦NFk , Gk+1 ← Gk ◦ (W ◦X ◦ (GF )
β−1)FT

(W ◦ (GF )β)FT , (3)

where k is the current iteration index and

NFk =
GT .

[
W ◦ (X −GΦF ) ◦ [G(F k − ΦF )]β−1

]
GT . [W ◦ [G(F k − ΦF )]β ] . (4)

These updates are followed by a normalization stage. As shown in [4], the pro-
posed method outperformed state-of-the-art NMF methods. However, it might
suffer from poor results if G is sparse, because of the sensitivity of NMF to
its initialization (particularly while some components are zeros). In this paper,
we propose to use a physical dispersion model to inform—from known wind
directions—which sources did or did not contribute to the samples. We thus de-
rive the sparse structure of G as a binary mask denoted ΩG (see Fig. 1). Many
physical models are available in the literature, e.g., convolutive [11] or station-
ary Gaussian models [12]. Since the sampling period of concentration data is
much longer than the transfer of particles from a source to a sensor, it would
be without interest to use a convolutive model. Instead, we choose a Gaussian
plume model [9] which computes an atmospheric transfer coefficient, denoted t
hereafter, according to

t(ξ′s, ξ
′
l, u) �

exp(− (y′
s−y′

l)
2

2σ2
y′
l

)

(
exp(− (z′l−z′s)

2

2σ2
z′
l

) + exp(− (z′l+z′s)
2

2σ2
z′
l

)

)

2πuσy′
l
σz′l

, (5)

where ξ′s and ξ′l are the coordinates ξs and ξl, respectively expressed in a new
basis which sets the wind in the x-direction. u denotes the wind speed while σy′

l

and σz′
l
shape the Gaussian plume [9]. Typically, t ∈ [0, 10−6

]
and the highest

values denote an important transfer between a source and the sensor. This model
is assumed to be valid in quasi-stationary wind conditions for a source-sensor
transfer. For one row in X, we actually measure several, say ν, wind velocities
and angles, which provide ν atmospheric transfer coefficients for each industrial
source. They are gathered in a ν × q matrix denoted T below.

3 Incorporating a special structure into NMF

3.1 Model incorporation and thresholding

We now show how we link the dispersion model with the observed dataX defined
in Eq. (1). Let us first recall that X gathers n measurements. However—and
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as explained in Section 2—for each measurement, we actually get ν atmospheric
transfer coefficients since the wind data is oversampled by a factor ν. If we were
also oversampling the data measurement by a factor ν, for each row of X, we
would obtain a ν ×m data matrix X which could be written as

X � XI +XN � GIF I +GNFN , (6)

where the superscripts I and N denote the industrial and natural activities,
respectively. We also assume that for each measurement of X , the flow rate of
each industrial site is constant. Chemical flows can then be gathered in a q×m
matrix1 denoted Q. This implies that

XI = TQ. (7)

Actually, Q is equal to F I , up to a normalization stage, i.e., rows of F I are
equal to normalized rows of Q. From this relationship—the demonstration is
not provided for space considerations—Eq. (7) can be expressed as

XI = (T ◦ Q)F I , (8)

where Q � 1ν×mQT , 1ν×m is a ν ×m matrix of ones, and the superscript T

denotes the transposition. Eq. (8) combined with Eq. (6) shows that GI is a
function of T . In particular, low entries of T imply that the corresponding entries
in GI are low as well.

As averaging the rows in X provides one row of X, the industrial concen-
trations in one row of G correspond to averaged concentrations of T ◦ Q which
are denoted T ◦ Q below. In practice, we derive from the dispersion model a
vector T which provides the contribution of one industrial source in a sample.
When some values of this vector are low, this implies that some contributions
are negligible and can be rounded to zero. We first gather each vector T in a
n× q matrix T . We then derive a n× p mask ΩG which provides the locations
of the zeros in G, i.e.

ΩGi,j =

{
0 if T i,j ≥ maxj(T i,j)

105 or j > q
1 otherwise

(9)

This enables to discard sources which do not contribute to the mixture. This
structure matrix is similar to ΩF defined in Eq. (5).

3.2 NMF initialization by quadratic optimization

Let wi, xi, and gi be the ith row of W , X, and G, respectively. The ith row of
the contribution matrix minimizes a weighted least-square cost function under
some specific constraints, i.e.,

J(gi) =
(
xTi − FT gTi

)T
·Dwi ·

(
xTi − FT gTi

)
, (10)

1The extension to time-varying emissions—not provided in this paper for space
considerations—can be derived by noticing that Q becomes a ν × q ×m tensor.
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where Dwi = diag(wi). This function may be written under a quadratic form

J(gi) =
1

2
g
i
HgT

i
+ uTgT

i
, (11)

withH = 2FDwiF
T and uT = −2xiDwiF

T . Initializing G consists of estimating

min
gi

J(gi) s.t. gTi ≥ 0,
∑
i

g
i
=
∑
i

xi, x
T
i ≥ ΦTF · gTi , and gi ◦ΩGi = 0. (12)

The four constraints state that (i) each entry of g
i
is non-negative, (ii) the

contributions must be normalized because the profiles are proportions [13], (iii)
the known part of the data has to be lower than the whole data, and (iv) the
values of G on the constraints are zero. In practice, Eq. (12) is solved using the
interior-point convex algorithm from Matlab.

4 Experimental validation

In order to measure the performance of our proposed method, we simulate 250
mixtures of p = 3 sources—i.e., of q = 2 industrial and one natural sources—
with various input Signal-to-Noise Ratio (SNR) conditions. The wind direction
is chosen so that only one industrial source contributes to the mixtures whereas
the natural source is always active. ν = 48 wind conditions are given with each
observation data row. The data matrix consists of n = 50 samples and m = 7
species—listed in Table 1—with a weight matrix W . A uniform noise is added
while keeping positivity of the data, as explained in [4]. The chosen dissimi-
larity measure between X and GF is a Frobenius norm, i.e., β = 1 in Eq. (3).
Four approaches are tested in this paper, i.e., the multiplicative NMF [3], its
Weighted counterpart (WNMF) [4], our Constrained WNMF [4] (CWNMF),
and the proposed Model-based Constrained WNMF (MCWNMF) methods.

Fe Ca SO4 Zn Mg Al Cr
0 0 0 0 0 0 1
0 0 0 0 0 0 0
1 0 1 0 0 0 0

Table 1: Used matrix ΩF for the CWNMF and the MCWNMF methods.

To assess the quality of the fit, we use the Mixing-Error Ratio (MER) which
was also used in [4]. We generate several matricesX , with an input SNR ranging
from 15 to more than 70 dB. Figure 2 provides the MERs averaged along input
SNR intervals. It shows that our proposed MCWNMF outperforms all the other
methods, even for low to moderate input SNRs where the informed CWNMF
provides almost the same performance as the blind WNMF approach.

5 Conclusion

In this paper, we extended our previous informed NMF method [4] by using an
atmospheric dispersion model in order to inform the zero locations of one of the
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Fig. 2: MERs of the tested NMF methods, vs the input SNR.

factorized matrices. Experiments conducted with various input signal-to-noise
ratio conditions showed the relevance of the proposed method. In future work,
we will validate the enhancement it provides on real data.
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