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Abstract. This paper addresses a problem of determining goal candi-
dates in the frontier-based mobile robot exploration. The proposed solu-
tion is based on self-organizing map for the traveling salesman problem
with neighborhoods and it allows to study the exploration formulated as
a problem of repeated coverage of the current frontiers where the minimal
number of goal candidates is determined simultaneously together with the
expected cost to visit the candidates. The early results enabled by the
proposed self-organizing map-based solution indicate exploration improve-
ment for the proposed problem formulation. The presented work demon-
strates how neural network approach can provide interesting insights and
ground for studying optimizations problems arising in robotics.

1 Introduction

A problem of collecting information about an unknown environment can be
considered as a robotic exploration problem in which a mobile robot is requested
to create a map of the environment. A fundamental approach to the robotic
exploration is Yamauchi’s frontier-based approach proposed in late nineties [1].
In this event-based exploration, a mobile robot is navigated towards a selected
goal location at the frontier that represents an area between already known and
unknown parts of the environment. After reaching the location, the robot takes
a new sensor measurement, information about the environment is updated, and
the next robot goal is determined until the whole reachable space is covered by
the robot sensor, see an example of exploration steps depicted in Fig. 1.

Frontiers represent a huge set of possibilities from which the most suitable
one has to be selected in order to explore the whole environment as quickly as
possible. Yamauchi’s simple selection of the closest frontier provides a feasible
solution of the problem; however it does not lead to the fastest exploration pos-
sible. Therefore, various approaches combining expected information gain of the
goal candidate together with its distance from the robot in a utility function have
been proposed [2, 3, 4]. Even though these approaches provide a better perfor-
mance than using only a pure distance cost, they consider only an immediate
benefit of visiting the next best goal without planning for a longer horizon.

Authors of [5] proposed to consider visitation of selected frontier locations
(representatives) only from which all frontiers can be covered and formulated
the problem of determination of the next robot goal as the problem to find a
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Fig. 1: Exploration process using a grid map of the environment being explored.

shortest multi-goal path visiting all such representatives. The multi-goal path
planning problem is solved as the traveling salesman problem (TSP), e.g., by
Concorde [6], where an additional virtual goal is used to find a shortest open
path starting from the robot position and visiting all goal candidates. The next
robot goal is then selected as the first goal of the found multi-goal path.

Representatives of the frontiers improve exploration performance and also
reduce the number of goal candidates in the TSP and thus decrease the com-
putational burden. However, despite significantly better performance of the
approach [5] than a simple navigation to the closest frontier, the representatives
are determined by k-means algorithm, which does not explicitly consider any
expected coverage from the frontiers nor the distance to the robot. The rep-
resentatives are determined more like in an ad-hoc manner, and therefore, the
approach does not provide insights to the relation of the exploration performance
and the way how the goal candidates are determined.

In this paper, we formulate the problem of determination of the next robot
goal as the traveling salesman problem with neighborhoods (TSPN) and propose
self-organizing map (SOM) to determine the goal candidates explicitly consider-
ing both aspects, the expected coverage of the frontiers and the distance of a tour
connecting the candidates. The proposed SOM is based on our prior work on
SOM for the watchman route problem [7] and traveling salesman problem with
neighborhoods [8], which is here extended to the robotic exploration context.

Regarding SOM-based approaches to robotic exploration, to the best of the
authors knowledge, the proposed approach is the first SOM based solution that is
directly employed in the robot exploration task with limited visibility. Although
Peano curve provided by SOM has been considered as an exploration path in [9],
the paper lack any guarantee the whole environment would be explored using
a sensor with a limited range. In addition, the authors consider only an en-
vironment without obstacles and their approach needs several parameters. On
the other hand, the herein presented approach provides guaranteed exploration
using sensing range ρ and does not need specific parameter tuning. Moreover, it
is also compared with other robotic exploration approaches and thus it makes a
benefit of the SOM approach more evident.

2 Problem Definition

The environment being explored is represented by a probabilistic occupancy grid
(Occ), where integration of new sensor measurements is performed using Bayes
rule [10]. The next robot goal is determined within a grid map of the environ-
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ment M that is created from the occupancy grid as a result of the thresholding
the probability a grid cell is occupied. Cells ofM are one of three possible values:
empty, occupied, and unexplored. The exploration procedure can be summarized
as follows:

1. Initialize the occupancy grid Occ and integrate the first sensor measure-
ment of the omnidirectional laser scanner with the sensing range ρ.

2. Create the map M from the occupancy grid.

3. Detect all frontier cells: F ← detect frontiers(M).

4. Determine goal candidates G: G← get goal candidates(F ).

5. If |G| > 0
(a) Select the next robot goal g ∈ G using the TSP distance cost [5].

(b) Navigate the robot towards g.

(c) Collect new measurement with the range ρ and integrate it to Occ.

(d) Go to Step 2.
6. Terminate – the whole environment has been explored as there is no reach-

able goal (frontier).

The problem addressed in this paper is to determine new goal candidates
at Step 4. The optimization criterion is the time needed to explore the whole
environment that is measured as the distance traveled by the robot until all
reachable frontiers are covered. This length is denoted as L.

Even though L is not directly optimized at Step 4, the proposed approach is
based on the idea that a shorter TSP tour determined in Step 5a will provide
overall improved performance of the exploration as it has been presented in [5].

3 Self-Organizing Map for Determining Goal Candidates

The proposed SOM is designed to determine goal candidates that are positioned
on a shortest closed path connecting them and from which all frontiers are cov-
ered. The idea behind the procedure design is motivated by the fact that it is
not necessary to visit a frontier to explore new area surrounding it. Therefore,
goal candidates are found as points located at the distance ρ′ < ρ from frontier
cells. Each frontier cell is represented as a set of possible grid cells from which
the frontier can be covered; hence, the problem is formulated as a variant of the
TSPN to find a shortest tour visiting the sets that guarantees complete coverage
of all frontiers. Therefore, we consider the self-adjusting adaptation schema [8]
in which we avoid adaptation to already covered frontiers similarly to [7].

The used SOM is a two-layered competitive neural network where the input
layer is two dimensional vector for presenting frontiers to the network and the
output layer is a uni-dimensional array of neurons. Neuron weights and the
input frontiers are coordinates in the grid M and the array of neurons weights
represents a path inM. The path is called ring and it is determined as a sequence
of shortest paths between the consecutive neuron weights, e.g., using [11]. Thus,
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the output layer represents a sequence of straight line segments (ring) which is
a shortest path among obstacles connecting the neurons.

During the adaptation, frontiers are presented to the network in a random
order and the winner neuron is determined as the closest point of the ring to
the presented frontier, i.e., a new neuron is created at the position of the closest
point if such a neuron does not exist. At the end of each learning epoch, only
winner neurons (representing the current goal candidates) are preserved and all
other neurons are removed.

covering area
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ring

(b)

goal candidates

(c)

exploration path

selected next
robot goal
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Fig. 2: SOM based determination of the goal candidates: (a) sets Cf as an
intensity map, where blue denote locations covering few frontier cells while red
denotes a high number of covered frontier cells; (b) a ring connecting the winner
neurons; (c) determined goal candidates; (d) the final selected next robot goal.

The self-adjustment of the number of neurons is important because several
frontiers can be covered from a single goal candidate and thus it is not necessary
to adapt the network towards all frontiers. Moreover, a coverage of the frontier
can be provided from a point that is within ρ′ distance from it. Therefore, for
each frontier cell f a set of locations Cf from which f can be covered considering
ρ′ is determined in advance, see Fig. 2 with visualization of the sets. Then,
during the adaptation, the winner ν∗ and its neighbors are adapted towards
an alternate goal g ∈ Cf that is found as the closest point to ν∗ (considering
a shortest path among obstacles). After the adaptation, all frontiers that can
be covered from g are marked as covered and they are not considered for the
adaptation in the current learning epoch.

The value of ρ′ is set to ρ reduced about a dimension of the squared grid cell
of the grid map M to ensure coverage beyond the frontier. The network starts
with one neuron and the adaptation schema can be summarized as follows:

1. Let the current map beM and the set of frontier cells be F = {f1, . . . , fn}.
2. Determine the covering area Cf for each f ∈ F using ρ′.

3. Create a random permutation of the frontier cells Π(F ) ← permute(F )
and clear the covered frontiers by the current winners F covered ← ∅.

4. Select winner ν∗ to a frontier f ∈ F \ F covered.

5. Determine the goal g from Cf that is closest to ν∗.

6. Adapt ν∗ and its neighbouring nodes towards g and associate g to ν∗.

7. Mark newly covered frontiers fi from g; F covered ← F covered∪{fi|g ∈ Cfi}.
8. Remove all covered frontiers from the permutation, Π(F )← Π(F )\F covered.

and If |Π(F )| > 0 go to Step 4.
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9. Remove all neurons that are not winners in the current learning epoch.

10. If the winner neurons (the associated goals G) provide coverage of all
frontiers Stop the adaptation; Otherwise go to Step 3.

11. Traverse the output layer and use the associated goals to the winners as
the required goal candidates G.

4 Results

The proposed SOM based determination of goal candidates has been validated
in three environments: em, autolab, and jh; with dimensions 21 m×24 m,
35 m×30 m, and 21 m×24 m, respectively. The em is an environment with-
out obstacles and two other environments are visualized in Fig. 3. Lengths of
the final exploration path for the greedy method [1], the TSP distance cost based
method with k-means [5] and the proposed goal candidates determination also
with the TSP distance cost are depicted in Table 1. The results are average
values of 20 trials for each method, problem, and ρ, i.e., 540 trials in total.

Table 1: Average lengths of the exploration path for 20 trials

Environment em autolab jh

ρ [m] 3 5 7 3 5 7 3 5 7

Greedy [1] 172 97 91 302 269 167 196 204 178

K-means [5] 144 92 73 260 223 175 219 179 174

Proposed SOM 148 76 53 228 177 125 199 175 172

The presented results indicate the proposed formulation is valid and the SOM
based determination of the goal candidates provides shorter exploration paths.
The proposed approach provides better results in open space like environments
for longer sensing ranges, while for the office-like environments better results are
for small visibility ranges.

(a) SOM, L=137 m (b) TSP, L=175 m (c) SOM, L=170 m (d) TSP, L=178 m

Fig. 3: An example of the final exploration paths in the autolab (a, b) and jh
(c, d) environments for ρ=7 m and ρ=5 m, respectively.

The current implementation of the proposed approach is computationally de-
manding because of the underlying path planning on a grid, which also limits its
real deployment. However, this can be addressed by a polygonal representation
of the environment as it is shown in [12].
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5 Conclusion

A new SOM-based algorithm has been proposed for the robotic exploration for-
mulated as the TSPN. It is worth mentioning SOM enables to solve this problem
formulation, because other TSPN approaches are restricted to problems without
obstacles or non-overlapping neighborhoods, which is not the case of SOM. The
main source of the exploration-performance improvement comes from the ex-
plicit consideration of the sensor range in determination of the goal candidates.
A navigation to the position of a frontier close to obstacles is avoided. Such a
movement is not necessary because it will not provide a new information about
the unexplored area.

The proposed SOM provides goal candidates that are spatially distributed
to guarantee coverage of all frontiers while a cost of visiting all the candidates
is also taken into account. Even though, the results do not provide a significant
evidence of benefit arising from such a consideration, the SOM benefit is in a
straightforward solution of the related TSPN problem. Moreover, the flexibility
of SOM allows to consider not only sensing at the goal candidates but also sensing
along the path from one candidate to another candidate during the network
evolution. This can provide an additional source of performance improvement
in the mobile robot exploration task and it is a subject of our future work.
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