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Abstract. G-Protein-Coupled Receptors (GPCRs) are cell membrane
proteins of relevance to biology and pharmacology. Their supervised clas-
sification in subtypes is hampered by label noise, which stems from a
combination of expert knowledge limitations and lack of clear correspon-
dence between labels and different representations of the protein primary
sequences. In this brief study, we describe a systematic approach to the
analysis of GPCR misclassifications using Support Vector Machines and
use it to assist the discovery of database labeling quality problems and
investigate the extent to which GPCR sequence physicochemical trans-
formations reflect GPCR subtype labeling. The proposed approach could
enable a filtering approach to the label noise problem.

1 Introduction

Machine learning (ML) is a data-driven process and, as such, the quality of the
available data is paramount. Label noise may become a data quality problem
in supervised ML and is commonplace in real-world applications. It can take
many forms, including expert subjectivity in the labelling process, bounds on
the available information and communication noise [1].

There are few domains of knowledge in which the effects of label noise are
so pervasive and eloquent as in biomedicine and bioinformatics [2]. In medicine,
for instance, the reliability of diagnostic labels is often bounded by the natural
limitations of the specialists’ expertise [3], or even by the formal requirement of
a consensual or majority-based decision-making procedure.

In bioinformatics, protein subtype characterization is riddled with this prob-
lem. In the specific area of G-Protein-Coupled Receptors (GPCRs), this problem
is magnified by the fact that subtyping can be performed at up to seven levels of
detail [4]. GPCRs are cell membrane proteins of relevance to biology due to their
role in transducing extracellular signals and to the pharmaceutical industry for
being the target for many new therapies in pain, anxiety and neurodegenerative
disorders, amongst others.

Our study focuses on the characterization of class C, one of the five GPCR
families. The 3-D structure of proteins is key to the determination of their
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function but, so far, no class C full 3-D structure has yet been discovered and
their functional study must mostly rely on primary structure: the amino acid
(AA) sequences, publicly available from several databases. There are seven
class C subtypes with their corresponding labels. Label noise is unavoidable
in this context because sequence labeling is itself model-based and follows a
complex many-step procedure that can only guarantee limited success [5]. GPCR
classification may use aligned or unaligned versions of sequences. Some methods
of sequence alignment-free analysis entail transforming sequences according to
the physicochemical properties of their constituent AAs [6].

In this study, we investigated the classification of several alignment-free trans-
formations of class C GPCR sequences using Support Vector Machines (SVM).
The misclassified sequences were analyzed to discover non-random label noise
effects as a way to explore their possible biological explanation. This could be
the proof of concept for a systematic approach to assist the discovery of GPCR
database labelling quality problems, which would become the core of a label
filtering decision support system [1].

2 Materials

The data analyzed in this study were extracted from GPCRDB![5], a curated and
publicly accessible database of GPCRs. The investigated dataset (version 11.3.4
as of March 2011) comprises a total of 1,510 class C GPCR sequences, belonging
to seven subfamilies and including: 351 metabotropic glutamate (mG), 48 cal-
cium sensing (CS), 208 GABA-B (GB), 344 vomeronasal (VN), 392 pheromone
(Ph), 102 odorant (Od) and 65 taste (Ta).

3 Experiments

Previous research [7] investigated the supervised classification of the data set de-
scribed in section 2 using different classifiers for different alignment-free transfor-
mations of the sequences, including AA composition (AAC), digram-frequency
composition (Digram), Auto-Cross Covariance (ACC) [8] and the Physicochem-
ical Distance-Based Transformation (PDBT) [6]. AAC and Digram measure,
in turn, the frequency of appearance of N-grams of length one and two in the
sequence, while ACC and PDBT are more complex transformations based on
the physicochemical properties of the AAs and the sequencing information. Ta-
ble 1 shows the best classification results, obtained with SVM, for the different
transformed data sets.

The detailed analysis of the per-class results revealed relatively minor differ-
ences between those obtained with each of the four transformed data sets. This
observation suggested that the main causes of misclassification lie beyond the
differences between data transformations and that a more systematic analysis of
the classification errors was required.

Ihttp://www.gpcr.org/7tm
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Class | MCC | Prec | Rec
mG 0.95 0.95 | 0.99

Data Accu MCC CS 0.93 1.00 | 0.88
AAC 0.88 0.84 GB 0.98 0.99 | 0.99
Digram 0.93 0.91 VN 0.89 0.91 | 0.92
ACC 0.93 0.91 Ph 0.86 0.89 | 0.90
PDBT 0.92 0.90 Od 0.79 0.89 | 0.74

Ta 0.99 1.00 | 0.98

Table 1: SVM classifier results; Left: Global results for the four data transforma-
tions; accuracy (Accu), Matthews Correlation Coefficient (MCC). Right: Class
C GPCR subtype-specific results for the ACC data set only, including MCC,
Precision (Prec) and Recall (Rec).

f| ER| TC | mG | CS | GB | VN | Ph | Od | Ta | VT | VP R

2 | 100 | CS 100 0 0 0 0 0 0 91 600 | 0.15
6 | 100 | VN 0 0 0 0 96 4 0 404 | 596 | 0.67
7 | 100 | VN | 100 0 0 0 0 0 0 300 | 600 0.5

Table 2: Example of misclassification statistics for the ACC data set. For each
sequence f, the error rate (ER), the true class (TC), and how many times this
sequence was misclassified as belonging to each of the other classes (mG-Ta),
are displayed. The three last columns display the sum of the votes for the true
class (VT), for the most frequently predicted class (VP), and the ratio (R) of
one to the other.

3.1 A systematic approach to GPCR misclassification analysis
3.1.1 Iterative classification with different classification models

The proposed approach entails repeating 100 times the following procedure:
First, using 5-cross validation (5-CV), so that the current training set is used to
construct a RBF-SVM model [9] with an optimal value for the v parameter of the
kernel function and with the error penalty parameter C' varying within a small
range near its previously established optimum value; then classifying the test
set, recording which GPCR sequences are misclassified and the corresponding
confusion matrix. The use of CV in each of the 100 iterations ensures that each
instance is used one time for classification in each iteration of the outer loop.
We now have detailed results of how many times a sequence was misclassified
and how many times it was assigned to another class. To focus on the most
consistent classification errors, we set a conservative misclassification boundary
of 75% (i.e., only sequences misclassified in at least a 75% of occasions are deemed
to be misclassifications). Table 2 shows some examples for the ACC data set.
See Table 3 for the mapping between the number § and the protein database Id.
This misclassification analysis was repeated for each of the transformed data
sets. The AAC, Digram, ACC and PDBT sets yielded, in turn, 143, 88, 85
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and 100 misclassifications. A detailed analysis of these frequently misclassified
sequences revealed that they are nearly identical for ACC and Digram. There
are some differences with the PDBT misclassifications that might be the result
of the very different type of transformation. Importantly, there are 53 frequently
misclassified sequences that are common to all four data sets.

3.1.2  Analysis of misclassifications according to the voting scheme

These results suggest the existence of subtypes with recurrently wrong class
assignments. Since the underlying classification scheme of the SVM implemen-
tation [9] was “one-vs-one”, we first decided to analyze the results of the voting
scheme as applied to the k(k — 1)/2 resulting classifiers, including the votes of
each one, for each instance in each iteration. According to libSVM?, the subtype
with the greatest number of votes becomes the predicted class.

When the voting ratio (R) of true class to predicted class is low (< 0.5), the
classification error was deemed to be large, and small otherwise. To illustrate
this, we show the voting scheme results for the selected instances of Table 2.
Sequence § 6, for instance, is a V. N consistently misclassified as Ph; the mag-
nitude of the error is small, though, as R=0.67>0.5 is high. Sequence { 2 is
a C'S, consistently misclassified as mG; the magnitude of the error is large, as
R=0.15<0.5 is low.

Only 7 of the 85 frequently misclassified ACC-transformed sequences yield
large errors. Similarly, for AAC, Digram and PDBT sets, the majority of se-
quences have small errors.

8.1.3 Analysis of misclassifications according to the decision values

Clear differences in the magnitude of the recurrent classification errors have been
found. Pursuing further insight, we define a cumulative decision value (CDV)
specifically for the binary classifier that involves the true class and the predicted
class. The CDV is calculated as the sum of the SVM decision values over all
iterations and was recorded for each instance. GPCR subtypes were numbered
1 to 7 in the order they are presented in section 2. For subtypes i, j, if 4 is the
true class, a large positive CDV value if ¢ > j and a large negative one if 7 < j
both indicate clear misclassifications.

This time, the magnitude of the error was deemed large or small depending
on whether the CDV exceeded the threshold of 60 in absolute value or not. A
total of 21 out of the 85 frequently misclassified instances of the ACC transformed
data set have a large error according to this criterion, whereof 4 yield a very large
one (> 95).

Note that the information conveyed by the CDV complements that of R. For
instance, a misclassified sequence with high R would suggest that voting discards
all subtypes but the true and the predicted ones. If this is accompanied by a
large CDV in absolute value, the predicted subtype is strongly preferred.

2http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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i Id TC | PC R CDhV
1 g515¢c3 _9tele mG | Od | 0.75 -95
2 XP_002123664 CS | mG | 0.15 50
3 q8cOm6_mouse CS Ph 0.15 -46
4 XP_002740613 CS mG 0 -66
5 XP_002936197 VN | Ph | 0.83 -96
6 XP_002940476 VN | Ph | 0.67 -95
7 XP_002941777 VN | mG | 0.5 45
8 | BOUYJ3.DANRE | Ph | mG | 0.79 109
9 XP_001518611 Od | mG | 0.31 46
10 XP_002940324 Od | VN | 0.49 70
11 | GPC6A_DANRE Od Ph 0.5 74

Table 3: Sequences with large classification errors: For each sequence, the
GPCRDB Identifier (Id), the true class (TC), the predicted class (PC), the
voting ratio (R) and the cumulative decision value (CDV) are displayed.

4 Discussion

The proposed approach has revealed the existence of a number of instances
that, independently of the sequence transformation method, induce certain clas-
sification errors that could be deemed large or small (according to criteria that,
ultimately, should be set by proteomics experts).

Importantly, this analysis has shown that the misclassifications of a sizeable
proportion of sequences have a small magnitude. All these sequences might well
be considered as mild cases of label noise and should be redirected to a human
expert for further analysis. Small errors also suggest underlying similarities
between the GPCR subtypes whose characteristics may be unknown and worth
investigating. A small number of instances, though, show consistent and large
classification errors. They merit detailed study because they might be affected
by a more radical type of label noise, or even by straight mislabelling. In Table
3, we list GPCRs with either very large CDV (4), or small R (7).

Sequences X P_002123664, X P_002740613, X P_002936197, X P_002940476 and
X P_002940324 are all recurrently misclassified. X P_002740613, in particular,
yields a 100% error (R = 0) and large CDV. Their labels should require further
expert assessment, given that they were derived by an automated computational
analysis from an annotated genomic sequence by means of a gene prediction
mode from the RefSeq® databank.

Another couple of interesting cases are ¢8c0m6_mouse and BOUY J3_DANRE.
According to the information referenced at UniProt*, these GPCRs are unre-
viewed and should be considered only as preliminary data. The former, according
to GPCRDB, is a C'S that our system confidently (R = 0.15) classifies as Ph.
The European Nucleotide Archive® lists it as similar to the putative Ph receptor
V2R2. The latter, according to GPCRDB, is a Ph, while our system predicts

Shttp://www.ncbi.nlm.nih.gov/refseq/
4http://www.uniprot.org/uniprot/{BOUYJ3, Q8COME}
Shttp://www.ebi.ac.uk/ena/data/view/BAC26854
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it to be an mG with a very large CDV (109). Agreeing with our prediction, the
Ensembl Genome Browser® considers it to be an mG of subtype 6a.

5 Conclusions

Label noise is a potentially big problem in the process of automated class C
GPCR subtype classification from the alignment-free transformed versions of
protein primary sequences. This is because the labels of these sequences are
obtained indirectly through complex, many-step similarity modelling processes.
In this brief paper, we have proposed a systematic procedure, based on SVM
classification, to single out and characterize GPCR sequences with consistent
misclassification behaviour. The reported preliminary experimental results are
a proof of concept for the viability of a decision support system that combined
this procedure with expert knowledge in the field to assist the discovery of GPCR
database labelling quality problems, as a basis for label filtering.
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