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Abstract. Identification accuracy and speed are important factors in
automatic person identification systems. In this paper, we propose a
feature extraction method to extract brain wave features from different
brain rhythms of electroencephalography (EEG) signal for the purpose of
fast, yet accurate person identification. The proposed feature extraction
method is based on the fact that EEG signal is complex, non-stationary,
and non-linear. With this fact, non-linear analysis like entropy would be
more appropriate. Shannon entropy (SE) based EEG features from al-
pha, beta, and gamma wave bands are extracted and evaluated for person
identification. Experimental results show that SE features provide high
person identification rates yet with a low feature dimension, thus better
performance.

1 Introduction

Person identification is the process of recognising a person from a group. It
recognises the identity of a given person out of a closed pool of N [1]. The appli-
cations of person identification are found in video surveillance (public places, re-
stricted areas) and information retrieval (police databases) [1]. In general, there
are three means of authentications: password based (something the individual
knows), token based (something the individual possesses), and biometric based
authentication (something the individual is, such as voice, face, iris, retina, and
finger print). It has been shown that electroencephalogram (EEG) can also be
used as biometrics for person authentication for its advantages of difficult (close
to impossible) to fake, impossible to observe or intercept, unique, unintrusive,
and alive [2]. Therefore, EEG signal can also be used for person identification.

EEG is a measurement of the brain signals containing information generated
by brain activities [3]. EEG signal is captured by using multiple electrodes either
from inside the brain (invasive methods), over the cortex under the skull, or
certain locations over the scalp (non-invasive methods) [3]. EEG signal includes
the following sub-bands: delta (0.5-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta
(14-26 Hz), and gamma (>30 Hz) [3]. A majority of Brain-Computer Interface
(BCI) research has been focused on the alpha and beta bands [4]. However,
other wave bands may contain useful information and features that are unique
to individuals.

EEG signal carries genetic information; that is, there is a connection between
genetic information and EEG of an individual [5]. Moreover, EEG features are
universal as all living and functional persons have recordable EEG signal [6].
Therefore, EEG data can be suitably used for person identification [1, 5, 7, 8].
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The use of brain wave patterns as a new modality for person identification has
several advantages [1]: a) It is confidential because it corresponds to a mental
task; b) It is very difficult to mimic because similar mental tasks are person
dependent; and c) It is almost impossible to steal because the brain activity is
sensitive to the stress and the mood of the person, an aggressor cannot force the
person to reproduce his/her mental pass-phrase.

The performance of a person identification system can be measured based
on its accuracy and efficiency (identification speed). Feature extraction plays
a decisive role in ensuring the classification accuracy, and one of the methods
to reduce classifiers’ computational complexity, thus to accelerate classification
speed, is to decrease the number of features [9]. In this paper, we introduce
Shannon Entropy (SE) as an feature extraction method aiming at improving the
person identification speed yet still maintains a comparable accuracy to other
popular methods such as Autoregressive (AR) modeling.

2 Entropy

One of the challenging problems for EEG data feature extraction is that EEG
signal is complex, non-linear, non-stationary, and random in nature [3, 5, 8,
10, 11, 12, 13, 14]. They are considered stationary only within short intervals,
i.e. “quasi-stationary”, over longer periods of time, the signal characteristics
are non-stationary [15]. As consequence, numerous linear feature extraction
methods often apply short-time windowing technique to EEG signals to meet
this requirement. However, this assumption holds during a normal brain con-
dition, but during mental and physical activities this assumption is not valid
[3]. Non-stationary EEG signal can be observed during the change in alertness
and wakefulness, during eye blinking, during the transitions between various ic-
tal states, and in the event-related potential (ERP) and evoked potential (EP)
signals [3]. As a result, several approaches for non-linear analysis such as en-
tropy have been proposed [8] as randomness of non-linear time series data is well
embodied by by calculating entropies of the time series data [16].

Entropy is a measure of uncertainty. In brain-computer interface systems,
entropy can be used to measure the level of chaos of the system [3]. It is a
non-linear measure quantifying the degree of complexity in a time series [13].
Let X be a set of finite discrete random variables X = {x1, x2, ..., xm}, xi ∈ Rd,
Shannon entropy, H(X), is defined as [8]:

H(X) = −c
m∑
i=0

p(xi) ln p(xi) (1)

where c is a positive constant acting as a measuring unit and p(xi) is probability
of xi ∈ X satisfying:

m∑
i=0

p(xi) = 1 (2)
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Entropy reflects how well one can predict the behavior of each respective
part of the trajectory from the other. Basically, higher entropy indicates more
complex or chaotic systems, thus, less predictability [8].

So far, some entropy methods has been successfully used in EEG feature
extraction for epilepsy detection, such as Sample, Approximate, Spectral entropy
[13], and motor imagery such as Approximate [17], Kolmogorov [18], and Spectral
entropy [19]. However, entropy has not been applied for person identification.
We believe that entropy contains useful information and features that are unique
to individuals, and hence entropy can be used for person identification.

3 Feature Extraction and Person Identification

We extract EEG features based on SE and AR methods. The AR is chosen
as the baseline method so that we can compare the performance of the two
methods. The AR modeling has been the popular feature extraction for EEG-
based person identification as seen in [5, 20, 21]. EEG signals were firstly filtered
into four wave bands including alpha (8-13 Hz), beta (14-26 Hz), gamma (30-
45 Hz), and normal (8-45 Hz). Features were then extracted and classified
separately for each sub-band. In particular, the filtered signals (about 1200
second length) was then segmented into one-second [13] sub-trials. Next, SE
and AR features from sub-trials of each channel were extracted. SE features
were calculated using the equation 1, in which the probabilities p(xi) contain
normalized histogram counts of elements of an input EEG trial in 256 amplitude
bins. The selected optimal order of AR was 16 (AR16). Consequently, one (by
SE) feature or 16 (by AR16) features from each sub-trial were produced for
one channel. All the features from 23 channels were joined together to form a
feature vector for each sub-trial [22]. In brief, there were about 1200 vectors
of 23 or 368 features regarding to the feature extraction method, SE or AR16,
respectively. The extracted features were then used to train Linear Support
Vector Machine (SVM) classifiers for person identification as described in [15,
22]. The person identification performance based on the two sets of features
were finally compared for evaluation.

The person identification was experimented in two phases namely 3-fold cross
validation and testing. The set of feature vectors was divided into two parts
including 2/3 for 3-fold cross validation and 1/3 for testing. The SVM for
person identification was performed in WEKA 3.6, 64 bits on a PC running
Core i7 3.4GHz, 8GB RAM, and Windows 7, 64-bit OS.

4 Experimental Results

Our experiment was conducted on the Australian EEG (AEEG) dataset [23].
The dataset was collected in the John Hunter Hospital, New South Wales, Aus-
tralia, over a period of 11 years. The recordings were made by using 23 electrodes
(23 channels) placed on the scalp of a subject with the sampling rate of 167 Hz
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for about 20 minutes. Subset of the data used for our experiments consists of
EEG data of 40 normal persons. The dataset is summarised in Table 1.

Group
Number of

subjects
Number of
channels

Number
of trials

Number
of sessions

Trial length
(seconds)

Normal 40 23 1 1 1200

Table 1: AEEG dataset descriptions

Our experiments show that SE features extracted from individual wave bands
provide much faster identification speed than AR16 in both 3-fold cross valida-
tion and testing phases yet with comparable accuracy. The identification speed
comparisons for 3-fold cross validation are demonstrated in Figure 1, in which
the identification speed of SE on Alpha band (54 secs) is much faster than that
of AR16 (766 secs). The obvious reason is that SE’s feature dimension (23) is
lower than AR’s (368).

Fig. 1: Comparison of identification speed between SE and AR16

Band
SE AR16

3-Fold Cross.(%) Test(%) 3-Fold Cross.(%) Test(%)
Gamma 91.7 87.1 95.2 91.9

Beta 73.6 73.1 94.4 91.6
Alpha 60.5 60.3 91.8 89.1

Normal 75.9 74.1 97.2 95.0

Table 2: Person identification rates on different wave bands

Although the accuracy of SE is not as high as AR16 on individual wave
bands (as summarized in Table 2: the SE’s highest identification rate is 91.7%
on gamma band, while AR16 reaches 97.2% on normal band), we can improve the
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SE’s identification rate by concatenating features from alpha, beta, and gamma
to form 69-feature vectors. It is likely impossible to apply the same manner
with AR16 as it results in vectors of 1104 features, while the number of training
samples is about 1200. Therefore, this can cause the curse of dimensionality [22]
as it is recommended in that the training samples per class should be at least
five to ten times as many as the number of features.

Accordingly, the SE’s improved classification rate is almost as same as that
of AR16, that is, 97.1% versus 97.2% respectively. Although the number of
features of SE increases by three times(69), it is 5.33 times smaller than AR16’s,
and the identification speeds of SE are still 2.3 and 2.6 times faster than AR16
in 3-fold cross validation and testing modes respectively (see Table 3).

Feature
3-Fold Cross. Test

Rate(%) Time(s) Rate(%) Time(s)
Shannon Entropy 97.1 80 94.9 18

AR16 97.2 184 95.0 47

Table 3: SE’s improved person identification rate

5 Conclusions

We have demonstrated that using SE features yields very fast person identifica-
tion, yet with comparable accuracy because the feature dimension is low. This
not only helps to avoid the curse of dimensionality [22], but also reduces SVM’s
computational complexity, thus increases the speed of the classifiers. In real
life security operation, timely response is critical. In the future, we will inves-
tigate other entropy methods as well as conduct experiments on a larger scale
of datasets for person identification. In addition, we will also investigate, from
the theory point of view, on the information content carried by different features
and prove its impact on the accuracy and performance.
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