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Abstract.

Confounding sources of variation, which are often either unknown or known

with error, are widespread in genomic datasets, and failing to adjust for

them may adversely impact statistical inference. In this context, we pro-

pose a “spatiotemporal” independent component analysis method that

possesses a novel invariance property, and we show that that spatiotem-

poral aspect may increase the ability of the method to model confounding

sources of variation.

1 Introduction

We address the problem of clearing (as much as possible) large genomic datasets
from confounding sources of variation, known as batch effects, without (too
much) removing biological variations of interest. Batch effects occur in large-
scale genomic datasets that aggregate measurements obtained under different
technical conditions such as reagent quality, laboratory temperature, or chip.
Batch effect removal is particularly challenging due to the many possible sources
of variations that are unknown or only partly known through limited informa-
tion, such as batch number and processing date. Removing those confound-
ing factors from genomic data is however of critical importance, as not doing
so may adversely affect the validity of biological conclusions drawn from the
datasets [1, 2, 3, 4].

The genomic data we focus on here are DNA methylation data, which have
been generating much interest in view of associations with diseases such as can-
cer, diabetes, and Alzheimer’s [4]. Each database thus takes the form of a p-by-n
feature-by-sample matrix X , where p (the number of methylation sites) is typ-
ically around 20 000 and n (the number of individuals in the dataset) a few
hundreds.

A popular approach to address batch effects, as well as other technical and
biological artefacts, is surrogate variable analysis (SVA) [1]. Recent develop-
ments in SVA have shown that replacing the underlying principal component
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analysis (PCA) by independent component analysis (ICA)—yielding a method
dubbed ISVA—improves identification of confounders and subsequent statistical
inference [3].

Applying ICA methods (see, e.g., [5, 6, 7] for the concepts or [8, 9, 10, 11] for
applications in genetics) to a feature-by-sample matrix X yields a decomposition

X ≈ ABT =

K∑
k=1

A:,kB
T
:,k

where A:,k can be interpreted as the gene activation pattern of component k
and B:,k as the weights of this pattern in the samples. When computing this
decomposition, the question arises whether one should minimize the mutual in-
formation between the columns of A or those of B. Both options are justifiable a
priori [12]. However, if there are reasons to believe that the technical factors and
the factors of interest are less conditionally dependent given the feature, resp.
given the sample, then the “A”, resp. “B” option, looks more promising. In ge-
nomic data, the former seems a priori more realistic than the latter, since large
databases aggregate cohorts of individuals rather than groups of genes. More-
over, in earlier times, the very vertical shape of matrix X in genetic datasets—
small number of individuals compared to the number of genes—naturally pointed
to the “A” option, since A contains many more observations (rows) than B on
which an estimator of mutual information can be applied; but the validity of
this argument has waned with the rise of larger databases.

In [12], a continuum between the “A” and “B” options was investigated
on gene expression databases using a “spatiotemporal” ICA method based, in
the spirit of the JADE method [13, 14], on joint diagonalization of cumulant
matrices. The method was validated in [12] by assessing if known biological
pathways were enriched in columns of A, and it was concluded that a markedly
better enrichment may be observed at intermediate points of the continuum.
However, biological pathways represent fuzzy objects and so are not ideal for
the purpose of method evaluation.

In this work, building on [12] and [4, §7], we study how the tradeoff between
favoring independence on A versus B may affect the ability of an ICA method
to model confounding factors. Specifically, we investigate how the tradeoff af-
fects the correlation between each column of B and the beadchip. We focus on
beadchip effects because this provides a more objective framework in which to
evaluate ICA methods. This is because it is known which samples have been
done on which beadchip and beadchip effects normally affect all samples on the
chip. Hence, the confounder is known and the modeling of it by the BSS al-
gorithm can be more objectively assessed. The presence of a high correlation
between the beadchip and certain components suggests that cleaner data may
be obtained by removing those components from the data.

The paper is organized as follows. Section 2 presents the ICA method, which
is validated in Section 3, and conclusions are drawn in Section 4.
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2 An unbiased orthogonal spatiotemporal ICA method

We now present the ICA method that we use to generate matrices A and B
from the data matrix X ∈ R

p×n. The algorithm depends on a spatiotemporal

parameter α ∈ [0, 1] that allows it to explore a continuum between imposing
independence solely on A (α = 0) and solely on B (α = 1). The term “spa-
tiotemporal” comes from the pixel-by-time data in medical imaging for which
the concept was introduced [15]. For lack of space, we abundantly refer to pre-
vious literature on spatiotemporal ICA and we emphasize the novel unbiased
orthogonal aspect.

The first step consists of centering the feature-by-sample data matrix X by
subtracting the row and column means, followed by a dimensionality reduction
by means of a K-truncated SVD, yielding a new matrix X̃ = UKDKV T

K . All
the possible two-factor decompositions of X̃ are given by X̃ = ABT where
A = UKDKW−1 and BT = WVK with W a K ×K invertible matrix. In [12]
and [4, §7], as is customary in ICA methods, W was restricted to the orthogonal
group O(K) = {W ∈ R

K×K : WTW = I}. A drawback of this restriction is
that further imposing decorrelatedness of the columns of A (i.e., imposing ATA
diagonal) reduces very much the freedom inW , whereas this property is a natural
requirement when independence is sought in A. We remedy this drawback by
considering instead the decomposition

X̃ = UKDα
KW−1︸ ︷︷ ︸

=:A

WD1−α
K V T

K︸ ︷︷ ︸
=:BT

, W ∈ O(K). (1)

Consequently, the columns of A, resp. B, are structurally decorrelated when
α = 0, resp. α = 1.

As in [4, §7], in the spirit of the JADE ICA algorithm [14], we seek W in
O(K) that minimizes a finite-data contrast function of the form

fα(W ) = α
∑
i

Off(Ci(B
T )) + (1− α)

∑
i

Off(Ci(A
T )),

where A and B depend on W through (1), Off(Y ) returns the sum of squares of
the off-diagonal elements of Y , and the Ci’s are fourth-order cumulant matrices,
satisfying the property Ci(WM) = WCi(M)WT . The minimization of fα is
thus a joint approximate diagonalization problem, which we address as in JADE
using Jacobi rotations. We initialize the Jacobi algorithm with W = I, ensuring
that both A and B initially have decorrelated columns.

3 Validation

We consider various DNA methylation databases where the samples are dis-
tributed over different beadchips with a maximum of 12 samples per chip. For
each database, we feed the p-by-n feature-by-sample matrix X , the spatiotem-
poral parameter α, and the number of components K to the spatiotemporal ICA
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Fig. 1: Central plot: for the various databases, maximal R2 value with beadchip
number as independent variable, as a function of α. The number K of com-
ponents extracted is indicated between parentheses. The smaller graphics show
how some R2 values were achieved.

algorithm outlined in Section 2. The algorithm returns matrices A ∈ R
p×K and

B ∈ R
n×K .

In order to appraise the ability of the ICA algorithm to model confounding
sources of variations, we measure the correlation between each column of B
and a known source of confounding, namely beadchip variations. To this end,
let c(s) denote the beadchip on which sample s was profiled. This assigns a
category to each sample, with up to 12 samples per category for the considered
databases. For i = 1, . . . ,K, let B:,i denote the ith column of B, B̄c(s),i denote
the mean value of {Bs′,i : c(s′) = c(s)}, and B̄:,i denote the mean value of
{Bs,1 : s = 1, . . . , n}. The correlation between B:,i and beadchip number is then

defined to be R2(B:,i, p) = 1−
∑

s(Bs,i−B̄c(s),i)
2

∑
s(Bs,i−B̄:,i)

2 . An R2 close to 1 means a high

correlation between B:,i and beadchip number, revealing that B:,i is strongly
affected by beadchip and thus presents a potential for modeling beadchip-related
confounding sources of variation.

Tests were performed on DNA methylation datasets UKOPSset1, UKOPS-
set2, T1D, WBBC [4] and BCT [16]. In the central plot of Figure 1, for each
database, the best R2 value found over the K columns of B is given versus the
value of the spatiotemporal parameter α. The R2 value is high in most cases,
showing that at least one of the columns of B strongly correlates with beadchip.
The trend is for R2 to decrease as α goes from 0 to 1, as could be expected (see
Section 1). However, the opposite trend is observed for database T1D, revealing
that imposing independence on B has value for this database.

The smaller plots on Figure 1 plot the column of B that achieves the largest
R2 value against beadchip number, for a dataset and a value of α that can be
read on the central plot. These smaller plots allow us to visualize how the R2

value was achieved.
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Fig. 2: Maximal R2 values of the columns of B in a linear ANOVA model with
beadchip number as independent variable, plotted versus α for different real
datasets, with the number K of components varying.

In Figure 1, the number K of components was estimated based on random
matrix theory, as done in [4]. In other experiments reported in Figure 2, we
investigate how the maximal R2 value is influenced by the number K of com-
ponents extracted. We observe that R2 for fixed α is seldom monotonically
increasing with respect to K. As a consequence, choosing K adequately is an
important issue, and a comparison between Figures 1 and 2 reveals that ran-
dom matrix theory produces a reasonable choice of K in our experiments. One
also observes that R2 does not necessarily depend monotonically on α, suggest-
ing that the continuum between imposing independence fully across genes and
across samples is worth exploring.

4 Conclusions and perspectives

This paper has contributed beyond [12] and [4, §7] chiefly in two ways. On
the algorithmic side, we have eliminated the time- and space-biases discussed
in [12] while staying within the orthogonal ICA framework. As a consequence,
the new algorithm enjoys the following invariance property that is seemingly
not present in other spatiotemporal ICA methods: if the input (X,α) yields
the output (A,B), then the input (XT , 1 − α) yields the output (B,A). In
other words, the temporal and spatial flavors are treated on an equal footing.
On the experimental side, we have observed that the strongest correlations are
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not systematically obtained with the “A” option. In forthcoming work, we
will thus investigate how the “B” option perform within the ISVA framework.
Alternatives to the JADE approach to ICA, or even other matrix factorization
methods such as the ones described in [17], are also worth testing.
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