
Towards an effective multi-map self organizing
recurrent neural network

Denis Baheux, Jérémy Fix and Hervé Frezza-Buet ∗

Supelec - MaLIS team
UMI 2958 Georgia Tech/CNRS

2 rue Edouard Belin 57070 METZ - France

Abstract. This paper presents a multi-map joint self-organizing architec-
ture able to represent non-markovian temporal sequences. The proposed
architecture is inspired by previous works based on dynamic neural fields.
It provides a faster and easier to handle architecture making it easier to
scale to higher dimensional machine learning problems.

1 Introduction

Self-organization is a feature commonly observed in nature, since natural pro-
cesses, that are incredibly robust, are far from being driven by a master pro-
cess that knows how to organize things. Natural processing rather relies on
the cooperation of local elements in a population, where a suitable response
to environmental constraints emerges. This way of computing is dramatically
different from nowadays computational designs and this is why such processing
are of primary interest for computer science. In this paper, we focus on self-
organizing processes inspired from the cerebral cortex neural tissue that Teuvo
Kohonen [1] paved the way for. Indeed, self-organizing maps (SOM) originate
from an attempt to model distributed competitive processes over the cortical sur-
face, viewed as a neural field [2], where a localized patch of few selected neurons
is the locus of learning processes. Driving self-organization with a neural field
has been reported as being difficult [3] since the neural field dynamics is hard to
control. Nevertheless, cortically-inspired self-organization is already widespread
in machine learning, since the SOM algorithm gets rid of neural fields dynamics
by using a winner-take-most (WTM) selection process. Although the computa-
tion of an argmax involved in WTM is less biologically plausible than a neural
field, it has the great advantage of enabling a fast computation in SOM, while
preserving self-organizing properties.

In past studies, we have explored multi-map self-organization, where compe-
tition processes in each map were coupled [4]. This has led us to design multi-
modal learning but also, more recently, temporal sequence learning through the
use of time-delay connections [5]. The core dynamical process of these multi-map
approaches relies on recurrent connections between the maps, making the map
competitions mutually dependent. Nevertheless, this smart resonance process
relies on coupled neural fields and thus requires a lot of computational resources
as well as handling complex dynamical processes.

∗This study has been supported by the Man Robot Dialog (MaRDi) project sponsored by
Agence Nationale de la Recherche

201

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

This paper presents an attempt to set up a multi-map resonant joint self-
organization process with computational techniques that are more suitable for
efficient machine learning implementations. As Kohonen did for single map
self-organization, the idea is to get rid of neural fields while preserving the dy-
namical properties of the whole architecture. The proposed mechanisms will
be illustrated in the context of temporal sequence processing, in order to see
whether the results in [5] can be obtained with the architecture proposed here.

2 A joint self-organizing maps architecture

Inspiring from [4], the proposed architecture can be viewed as a construction set
where building blocks are self-organizing maps, connected together. The exper-
iment addressed in this paper, following [5], involves two of them, as shown in
Fig. 1, where each map is represented by a group of three scalar distributions.
Any map M is a bi-dimensional arrangement of computational units, so that
each unit m can be referred to by its discrete position pm ∈ [0..N]2 in a 2D-grid.
The positions actually used lie inside a disk included in the grid, in order to
avoid side effects induced by the corners, but this does not impact the forthcom-
ing descriptions. Let us note xm ∈ [0, 1]2 the normalized positions for further
convenience. The output computed by some mapM results from the selection
of a position over the map surface. This output, denoted by OM ∈ [0, 1]2, is
thus simply the selected position (normalized).

delay

μS

ξS

νS

νD μD

ξD

ID = OS (t− 1)
CD = OS (t)

CS = OD (t)

S
D

o = IS

OD

OS

Fig. 1: Multimap resonant self-organization. See text for details.

The map outputs a selected position according to some competition process,
based on the matching of some input value IM against the unit prototypes, as
for classical SOM. Nevertheless, here, the prototypes are twofold. First the input
prototype of unit m, denoted by wm, represents the “preferred” input value of
unit m. It lives in the same space as the actual map input. For all units m, the
value resulting from matching the input against the prototype is defined as

202

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

∀m, μm = exp
(
−‖IM − wm‖2/2σμ2

)
. (1)

The second prototype handled bym is referred to as a context prototype, denoted
by ωm. It is matched against the context input CM which is here defined as the
output ON ∈ [0, 1]2 of some remote map N , ie. a normalized position in that
map, so ωm ∈ [0, 1]2 as well. The context matching value νm is defined by a
Gaussian similarly:

∀m, νm = exp
(
−‖CM − ωm‖2/2σν2

)
, CM = ON (2)

For each unit m in M, the two matching values μm and νm are merged into a
global matching ξm as follows:

∀m, ξm =
√
μm (βμm + (1− β) νm), (3)

with β ∈ [0, 1]. This merge ensures that the context modulates a matching
mainly driven by the input, therefore the network is not creating artificial global
matchings (“hallucinations”) independent from the inputs.

The prototype update rule is related to the current output value of the map,
whose actual computation is explained further. This update is the one used in
SOMs and it is here the same for both wm and ωm. Let us stress here that, as
opposed to the SOM algorithm, all the learning parameters are kept constant
over time, enabling the network to preserve its plasticity.

∀m ∈M, wm ← wm + αh (xm, OM) (IM − wm)
∀m ∈M, ωm ← ωm + αh (xm, OM) (ON − ωm)

with h (x1, x2) = exp
(
−‖x1 − x2‖2/2σh2

) (4)

Figure 1 illustrates the use of two maps, S and D for sequence processing, as
suggested by [5]. S is a state map encoding the state of the sequence. The input
of S is a scalar value IS = o ∈ [0, 1]. At each time step t, o (t) is taken from
a repeated sequence of observations, denoted by letters for the sake of clarity
(A = 0, B = 0.2, C = 0.4, D = 0.6, E = 0.8, F = 1). For example, using the
sequence ABF means that o (t) takes the values 0, 0.2, 1, 0, 0.2, 1, 0, 0.2, · · · at
successive time steps. The context input CS of S is the output position OD of
the D map. This latter map is a delay map, that handles the sequential nature
of the input by the use of a one time step delay. Indeed the input of D is
ID (t) = OS (t− 1). As for map S, the context input of D is CD = OS . In other
words, D represents the one step past output of S, contextualized by its current
output, providing the whole architecture with the ability to encode sequences,
as shown in further experiments.

Figure 1 shows the three distributions of the matchings for each map. The
dark one is the input matching, the one just beside is the context matching,
and the middle one the global matching. At time t, the inputs of the two maps
are fixed, since IS is constrained by the current observation o (t) and ID by the
last OS . The resulting matching distributions {μs}s∈S and {μd}d∈D are thus

203

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

determined too (they are darkened on Fig. 1). The remaining degrees of freedom
of the architecture are the determination of the map outputs, that will condition
the remaining matching distributions {νs}s∈S , {ξs}s∈S , {νd}d∈D and {ξd}d∈D.

The setting of these four distributions is the resonant pathway (see bold
arrows in Fig. 1) along which the outputs of the two maps, whose computation
has not been presented so far, is determined. This is actually done by iterating
the following algorithm until convergence of (OS , OD)

compute {νs}s∈S , {ξs}s∈S , {νd}d∈D, {ξd}d∈D from (OS , OD)
s� ← argmaxs∈S ξs, d

� ← argmaxd∈D ξd
OS ← OS + λ (xs� −OS) , OD ← OD + λ (xd� −OD)

This fixed point provides the final (OS (t) , OD (t)) for the current time step.
Then, learning can be applied to all the prototypes of the architecture, accord-
ing to equation (4), and the next time step can be processed from the next
observation in the sequence.

In our experiments, the fixed point is attained in few relaxation steps (about
50), which is much faster than the complex dynamic neural field coupling used
in [4, 5]. This is why joint organization can be addressed in the context of
efficient machine learning thanks to this shortcut. This will be shown in the
following experiments.

3 Results

We run the same experiments as in [5]. In all the experiments, we set σμ =
σν = 0.2, λ = 0.1, α = 0.15, σh = 0.06, β = 0.5. As in [5], we consider the
two sequences S1 = ABCDEFEDCBA and S2 = ABCBAFEDEF . These
sequences are clearly ambiguous since some observations appear more than once
in each of them but in a different context. Only the context in which they appear
makes possible the distinction between these inputs. For example in the sequence
S1, ’E’ is repeated two times but once after a ’D’ and once after a ’F’. The input
prototypes {ws}s∈S , after 500 time steps, are shown in gray level in Fig. 2(a).
As in classical SOM, we observe a continuous mapping of the one-dimensional
observations onto the two dimensional map. We also display the locations of the
50 last positions OS (t) as a trajectory within the map, as well as the observation
presented when a particular unit position was equal to OS (t). For sequence S1,
each observation appears two times in a different context. After 500 timesteps
(figure 2(a)) the sequence is almost learnt. Ten out of eleven elements of the
sequence have indeed elicited different OS (t) and the ambiguous observations
such as ’A’ are well-differentiated. The element ’B’ of the sequence is however
still ambiguous since OS is the same the two times it appears in the sequence.
It means that the input prototypes are already learnt but the recurrent pathway
is not correctly built yet; the observations are differentiated but the temporal
sequence is ignored. As the learning process continues, the recurrent pathway
organizes itself and the unique OS for ambiguous observations split into one unit
for each occurrence of this observation in the sequence (cf. Fig 2(b)). This split

204

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

is typical of what we observe experimentally. The input map usually starts like
a classical SOM with the selection of the units depending only on the current
observation. As learning goes on, the recurrent map is able to provide a suf-
ficiently informative context to enforce a split within regions of the input map
selective for the same observation. Also, we observe (not shown here) that the
sequence of OS within each map is stable.

(a) (b) (c)

Fig. 2: The distribution {ws}s∈S are shown in gray level after (a) 500 time-steps
and (b) 550 time-steps while presenting the sequence S1 = ABCDEFEDCBA.
The 50 last OS (t) before these time-steps, as well as the associated observation,
are shown along the red trajectory. (c) For clarity, a letter A, B, C, D, E or F
is associated with each scalar observations o = [0, 1].

Interestingly, if we now present the sequence S2 = ABCBAFEDEF to
the network, the prototypes re-organize. In this experiment, we first present
sequence S1 for 700 timesteps. The input prototypes {ws}s∈S as well as the
positions OS (t) are shown in Fig. 3(a). We then present sequence S2. The
input prototypes and the positions OS (t) after 700 additional time-steps are
shown in Fig. 3(b). We observe that even if the input prototypes change only
slightly, the selected units are completely different. In particular, a striking
example is the unit selected when presenting the observation o = 1.0 (’F’) that
became ambiguous when presenting the second sequence. We clearly see that two
units are now selected after 1400 time-steps when presenting this observation,
depending on the context. Overall, these two experiments illustrate the ability
of the architecture to learn a stable representation of a non-markovian sequence
and to adapt when a new sequence is presented.

4 Discussion

We have presented an algorithm that allows to implement the resonant compet-
itive processes involved in joint self-organization. This implementation is kept
suitable for machine learning applications, avoiding to cope with the complexity

205

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

(a) (b) (c)

Fig. 3: The distribution {ws}s∈S are shown in gray level after (a) 700 time-
steps while presenting sequence S1 (b) 700 additional time-steps while presenting
sequence S2. As in Fig 2, the 50 last positions OS (t) are shown.

of coupled neural fields. Our algorithm is stationary, since no decaying learning
rates and no shrinking WTA radius is required. Using constant parameters is
crucial for preserving the adaptability to react to changes in the input distri-
bution. Another advantage of this approach, compared to the more biologically
plausible ones, from which it is derived [4, 5], is the use of the winner positions
over the map surface as the only inputs provided by one map to the other. This
makes our architecture close to SOM-SD [6, 7] where such reduced information
is transmitted in temporal recurrent pathways. Moreover, using winner posi-
tions allows to visualize the map-to-map weights organization, and thus better
understand the complex inter-map self-organizing processes emerging as a re-
sponse to the input observation stream. This will help for further studies of the
self-organizing dynamics of such architectures.

References

[1] Teuvo Kohonen. Self Organizing Maps. Springer, 1997. Second Edition.

[2] Shun-Ichi Amari. Dynamics of pattern formation in lateral-inhibition type neural fields.
Biological Cybernetics, 27(2):77–87, 1977.

[3] Lucian Alecu, Hervé Frezza-Buet, and Frédéric Alexandre. Can self-organization emerge
through dynamic neural fields computation? . Connection Science, 23(1):1–31, 2011.

[4] Olivier Ménard and Hervé Frezza-Buet. Model of multi-modal cortical processing: Coher-
ent learning in self-organizing modules. Neural Networks, 18(5-6):646–655, 2005.

[5] Bassem Khouzam and Hervé Frezza-Buet. Distributed Recurrent Self-Organization for
Tracking the State of Non-Stationary Partially Observable Dynamical Systems. Biologically
Inspired Cognitive Architectures, 3:87–104, 2013.

[6] Markus Hagenbuchner, Alessandro Sperduti, and Ah Chung Tsoi. A self-organizing map for
adaptive processing of structured data. IEEE Transactions on Neural Networks, 14(3):491–
505, May 2003.

[7] Alessandro Sperduti. Neural networks for adaptive processing of structured data. In Georg
Dorffner, Horst Bischof, and Kurt Hornik, editors, ICANN, volume 2130 of Lecture Notes
in Computer Science, pages 5–12. Springer, 2001.

206

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

