
Ensembles of Extreme Learning Machine

Networks for Value Prediction

Pablo Escandell-Montero, José M. Mart́ınez-Mart́ınez,

Emilio Soria-Olivas, Joan Vila-Francés, José D. Mart́ın-Guerrero ∗

IDAL, Intelligent Data Analysis Laboratory, University of Valencia

Av. de la Universidad, s/n, 46100, Burjassot, Valencia - Spain

Abstract. Value prediction is an important subproblem of several re-

inforcement learning (RL) algorithms. In a previous work, it has been

shown that the combination of least-squares temporal-difference learning

with ELM (extreme learning machine) networks is a powerful method for

value prediction in continuous-state problems. This work proposes the use

of ensembles to improve the approximation capabilities of ELM networks

in the context of RL.

1 Introduction

Situated in between supervised learning and unsupervised learning, the paradigm
of reinforcement learning (RL) deals with solving sequential decision-making
problems in which there is limited feedback [1]. The RL problem is usually
formulated as a Markov decision process (MDP). A discounted MDP is defined
by the tuple {S,A, P, ρ, γ} where S is the state space of the process, A is the
action space, P the transition probability function P : S × A × S → [0, 1),
ρ : S × A × S → R the reward function, and γ is the discount factor. Value
prediction is an important subproblem of several RL algorithms that consists of
learning the value function V π of a given policy π [1]. When the state space
is discrete and small enough, value functions can be stored in tables with one
entry per state; however, in the general case, the state space is continuous and
the value function must be represented approximately.

A popular method for value prediction in continuous-state problems is least-
squares temporal-difference (LSTD) learning [2]. In LSTD, value functions are
assumed to be represented with linear architectures, which limits the kind of
approximators that can be used. Given a state s, its value V π(s) is approxi-
mated by first mapping s to a feature vector φ(s) ∈ R

k, and then computing a
linear combination of those features: φ(s)⊤β, where β is the weight vector (to
be learned). The accuracy of the approximated value function depends in part
on the features employed; thus, selecting a suitable feature space is a crucial
stage of LSTD [3]. Generally, there is no prior knowledge about the shape of the
value function and it is not possible to define an ad-hoc feature space. The most
common procedure consists of partitioning the state space in a regular set of
features employing, for example, state aggregation methods or radial basis func-
tion (RBF) networks with fixed bases. These techniques are local approximators,
which are less powerful than global ones (e.g. artificial neural networks (ANNs)

∗This work has been partially funded by SMARTPIF project (FP7-SME-2012, 312573)

129

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

or support vectors machines) [4]. In [5] we proposed the LSTD-ELM algorithm,
a method based on the extreme learning machine (ELM) [6] that allowed the
use of single-hidden layer feed-forward networks (SLFNs) to approximate value
functions in LSTD learning.

LSTD-ELM has shown to provide better accuracy and scalability properties
for high dimensional problems than other LSTD methods based on local approx-
imators [5]. These benefits are due to the global nature of SLFNs. However,
similar to other techniques based on ELM, the quality of the results may vary in
different trials due to the randomness introduced by the ELM algorithm. Several
authors have applied ensemble methods in ELM to alleviate this problem and
enhance the approximation accuracy and stability [7, 8, 9]. This paper explores
the use of ensembles in LSTD-ELM for value prediction problems.

2 Extreme Learning Machine

Extreme learning machine (ELM) is an algorithm for training SLFNs where the
weights of the hidden layer can be initialized randomly, thus being only necessary
the optimization of the output layer weights by means of standard least-square
methods [6].

Let us consider a set of N patterns, D = {(xi,oi); i = 1 . . .N }, where
{xi} ∈ R

d1 and {oi} ∈ R
d2 , so that the goal is to find a relationship between

xi and oi. If there are M nodes in the hidden layer, the SLFN’s output for the
j-th pattern is:

yj =

M∑
k=1

hk · f (wk,xj) (1)

where 1 ≤ j ≤ N , wk stands for the parameters (weights and biases) of the
k-th element of the hidden layer, hk is the weight that connects the k-th hidden
element with the output layer and f is the function that gives the output of
the hidden layer; in the case of MLP, f is an activation function applied to the
scalar product of the input vector and the hidden weights. Equation (1) can be
expressed in matrix notation as y = G · h, where h is the vector of weights of
the output layer, y is the output vector and G is given by:

G =




f (w1,x1) . . . f (wM ,x1)
...

. . .
...

f (w1,xN) · · · f (wM ,xN)


 (2)

Then, the weights of the output layer can be computed as h = G−1 ·o using the
Penrose-Moore pseudoinverse to invert G robustly.

3 LSTD-ELM algorithm

Despite the powerful approximation capabilities of ANNs, they can not be used
to approximate value functions due to technical restrictions imposed by LSTD.
ELM theory introduces a training algorithm for SLFNs that differs from tradi-
tional methods based on iterative procedures (such as gradient-descent or global

130

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

search). On the contrary, ELM transforms the training process into a system
of linear equations that can be solved analytically. LSTD-ELM exploits this
property to allow the use of SLFNs in a LSTD learning scheme.

The LSTD-ELM algorithm starts by initializing the parameters w of the
hidden nodes. Then, these nodes are used to define the feature space φ(s) ∈ R

M ,
where M is the size of the hidden layer and each hidden node is equivalent to a
feature. After an observed trajectory of L states and rewards, (s0, r0, . . . , sL, rL),
the following data structures are used to build from experience the matrix A (of
dimension M ×M) and the vector b (of dimension M):

b =

L∑
i=0

φ(si)ri; A =

L∑
i=0

φ(si)(γφ(si+1)− φ(si))
⊤ (3)

Then, the output layer weights can be computed as h = A−1 · b.
It has been shown that, after enough independent trajectories and under

some technical conditions, LSTD-ELM achieves a good approximation of the
value functon, V π(s) ≈ φ(s)⊤h [5].

An issue with LSTD-ELM is that as some parameters are randomly assigned
and remain unchanged during the training process, they can be non-optimum
and the approximation performance may be degraded. This problem is intrinsic
to any method based on the ELM algorithm. Some authors have proposed the
use of ensemble techniques to reduce the possible negative effects of randomness
in ELM. In the next section, an extension of LSTD-ELM based on ensembles is
proposed.

4 LSTD based on ELM ensembles

An ensemble is a method that consists of taking a combination of several models
to form a single new model. It is known that combining suboptimal models
is an effective and simple strategy to improve the performance of each one of
the combination members. There are different ways to combine the output of
several models. In the ELM context, for example, there exist ensembles based
on bagging [7], AdaBoost [8] or evolutionary algorithms [9]. These methods use
the desired output to optimize the way in which individual models are combined.
However, they cannot be applied in the RL paradigm due to the absence of an
explicit desired signal.

Another option to form a single model from several individual models is by
simply taking the average of their outputs. This technique, which was used
here, does not require a desired signal. In particular, three different methods
to compute the average were tested: mean, median and trimmed mean. The
trimmed mean involves the calculation of the mean after discarding some samples
located at the extremes of the distribution [10]. Although the three methods are
similar, the last two are more robust to the presence of outliers.

The Algorithm 1 shows the pseudo-code of LSTD based on an ELM ensemble,
denoted by LSTD-eELM. Given a policy π, the discount factor γ and the number
c of ensemble members, LSTD-eELM starts assigning randomly the hidden layer

131

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Algorithm 1 LSTD algorithm based on ELM ensemble

Input: Policy π to be evaluated, discount factor γ, number of ensemble members c

1: Initialize randomly wj ; j = 1, . . . , c, the hidden layer parameters of the c ELM networks
2: Let φj(x) : x → f(wj, x) denote the mapping from an input x to the output of the SLFN’s

hidden layer
3: Set the c matrices A and vectors b to 0; t = 0
4: repeat

5: Select a start state st
6: while st 6= send do

7: Apply policy π to the system, producing a reward rt and next state st+1

8: for j = 1, . . . , c do

9: Aj = Aj + φj(st)(γφj(st+1) − φj(st))
⊤

10: bj = bj + φj(st)rt
11: end for

12: t = t + 1
13: end while

14: until reaching the desired number of trayectories
15: hj = A

−1

j
bj

16: output V π(s) ≈ combineMembers(φ, h)

parameters of the c ELM networks, wj ; j = 1, . . . , c. Afterwards, it builds an
individual matrix A and vector b for each network. Then, the output layer
parameters can be computed as hj = A−1

j bj . The function combineMembers()
computes and combines the output of the c networks using one of the averaging
methods like the mean or the median.

5 Experimental study

The performance of the proposed method was evaluated on the inverted pendu-
lum problem, a classical benchmark for approximate RL. This problem consists
of a rigid pole mounted on a mobile cart (see Fig. 1a). The cart is free to move in
a one-dimensional track and the pole is free to move only in the vertical plane of
the cart and track. The mass (m) and length (l) of the pendulum are unknown
to the agent. The agent can apply three actions to the cart: left force (-50 N),
right force (50 N), or no force (0 N). Each action is corrupted by uniformly dis-
tributed noise in the range [−10, 10]. The dynamics of the inverted pendulum is
governed by the following nonlinear equation [3]:

θ̈ =
g · sin(θ)− α ·m · l · (θ̇)2 · sin(2θ)/2− α · cos(θ) · a

4 · l/3− α ·m · l · cos2(θ)
(4)

where g is the gravity constant (g = 9.8 m/s2), m is the mass of the pendulum
(m = 2 Kg), M is the mass of the cart (M = 8 Kg), l is the length of the
pendulum (l = 0.5 m), a is the control action, and α = 1/(m+M). The state
space of the problem consisted of the vertical angle θ and the angular velocity
θ̇ of the pendulum, which was bounded to [-5,5] rad/s. An angle greater (in
absolute value) than π/2 indicated the end of the trajectory.

Trajectories start with a state randomly selected from the subset defined by
the ranges θ = [−π/2, π/2] and θ̇ = [−5, 5]. The agent receives a positive reward
equal to 1 as long as the pendulum is balanced, i.e., |θ| < π/2. Otherwise, the
reward received is 0. While the usual goal is to learn a policy that balances the

132

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

(a)

3 6 9 12 15 18 21 24
0.114

0.116

0.118

0.12

0.122

0.124

0.126

M
A

E

ELM networks in the ensemble

(c)

15 20 25 30 35 40 45 50 55
0.11

0.12

0.13

0.14

0.15

0.16

0.17

M
A

E

Hidden nodes

(b)

LSTD−ELM
LSTD−eELM mean

Fig. 1: (a) Inverted pendulum problem. (b) Comparison between LSTD-
eELMmean and the standard LSTD-ELM. (c) Performance of LSTD-eELMmean

for different ensemble sizes.

pole, we want to estimate the value function for a given policy. Thus, it was
fixed a random policy that selects the three actions with the same probability.

There are two parameters in LSTD-eELM that should be tuned: the number
of hidden nodes of the ensemble members, M , and the number of members,
c. The effects of varying both parameters were studied in two experiments. In
the first experiment, c was fixed to 18 and the number of hidden nodes was
varied from 15 to 55 in steps of 5. This process was repeated with the three
versions of LSTD-eELM, each one using a different method (mean, median and
trimmed mean) to combine the ensemble members. For comparison purposes,
the same procedure was performed with the original LSTD-ELM. In the second
experiment, M was fixed to 35 and the number of members was varied from 3
to 24 in steps of 3.

In both experiments, γ was fixed to 0.9 and the performance was measured
in terms of the mean absolute error (MAE). Similar to [2, 5], MAE was mea-
sured against a “gold standard” value function, Vmc, built using Monte Carlo
simulation [1] on a representative set of discrete states.

5.1 Results

The results of all experiments were computed as the mean values and standard
deviations from 30 independent trials. Table 1 summarizes the results of the first
experiment. For each size of the hidden layer, the minimum MAE is highlighted
in bold. As it can be observed, the proposed method provided the best results in
all cases. Among the three versions, LSTD-eELMmean obtained the best approx-
imation in 7 of the 9 sizes tested. However, in general, the three LSTD-eELM
versions achieved similar results. Fig. 1b compares graphically the performance
of LSTD-eELMmean and the standard LSTD-ELM. For this case, the proposed
method reduced (in average) the MAE by 11.09% and the standard deviation
by 77.22%.

The results of the second experiment are shown in Fig. 1c. As expected, the
MAE and standard deviation exhibit a decreasing tendency, which suggests that
the quality of the approximation can be improved by adding more members to
the ensemble. On the other hand, it should be noted that the computational

133

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

#Nodes LSTD-ELM LSTD-eELM

Mean Median Trimmed mean

15 0.1563 (0.007) 0.1432 (0.001) 0.1442 (0.002) 0.1436 (0.001)
20 0.1544 (0.011) 0.1292 (0.004) 0.1314 (0.004) 0.1290 (0.004)
25 0.1424 (0.013) 0.1156 (0.002) 0.1165 (0.002) 0.1154 (0.002)
30 0.1299 (0.010) 0.1169 (0.001) 0.1174 (0.001) 0.1171 (0.001)
35 0.1269 (0.005) 0.1159 (0.001) 0.1167 (0.001) 0.1163 (0.001)
40 0.1276 (0.006) 0.1155 (0.001) 0.1164 (0.002) 0.1158 (0.001)
45 0.1280 (0.006) 0.1148 (0.002) 0.1156 (0.002) 0.1151 (0.002)
50 0.1267 (0.006) 0.1157 (0.002) 0.1165 (0.002) 0.1160 (0.002)
55 0.1254 (0.006) 0.1158 (0.001) 0.1162 (0.001) 0.1159 (0.001)

Table 1: Performance of LSTD-ELM and the three versions of LSTD-eELM for
different sizes of the hidden layer. Performance is measured in terms of MAE;
standard deviation is provided within parentheses. The best result for each
architecture is highlighted in bold.

complexity of the algorithm grows linearly with the number of ensemble mem-
bers.

6 Conclusions

In this paper, we have proposed to use ensembles of ELM networks for value
prediction in continuous-state problems. Although ELM networks have demon-
strated to be a powerful function approximator in RL, their accuracy and sta-
bility can be further improved by combining several networks. The resulting al-
gorithm, called LSTD-eELM, has been empirically evaluated in the well-known
inverted pendulum benchmark problem. Our experimental results suggest that
the proposed method outperforms LSTD-ELM.

References

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, March 1998.

[2] Justin A. Boyan. Technical update: Least-squares temporal difference learning. Machine
Learning, 49(2-3):233–246, November 2002.

[3] Michail G Lagoudakis, Ronald Parr, and L. Bartlett. Least-squares policy iteration.
Journal of Machine Learning Research, 4:2003, 2003.

[4] C. Bishop. Pattern Recognition and Machine Learning. Springer, 1 edition, 2007.
[5] Pablo Escandell, José M. Mart́ınez, José D. Mart́ın, Emilio Soria, and Juan Gómez. Least-

squares temporal difference learning based on extreme learning machine. In 21 ESANN,
pages 233—238, Belgium, 2013.

[6] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine:
Theory and applications. Neurocomputing, 70(1-3):489–501, December 2006.

[7] Huixin Tian and Bo Meng. A new modeling method based on bagging ELM for day-ahead
electricity price prediction. In 2010 IEEE Fifth International Conference on Bio-Inspired
Computing: Theories and Applications (BIC-TA), pages 1076–1079, 2010.

[8] Hui-Xin Tian and Zhi-zhong Mao. An ensemble ELM based on modified AdaBoost.RT
algorithm for predicting the temperature of molten steel in ladle furnace. IEEE Trans-
actions on Automation Science and Engineering, 7(1):73–80, 2010.

[9] Dianhui Wang and Monther Alhamdoosh. Evolutionary extreme learning machine en-
sembles with size control. Neurocomputing, 102:98–110, February 2013.

[10] Bradley Efron and Robert Tibshirani. Statistical data analysis in the computer age.
Science (New York, N.Y.), 253(5018):390–395, July 1991.

134

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

