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Abstract. Ensemble models can achieve more accurate predictions than
single learners. Selective ensembles further improve the predictions by
selecting an informative subset of the full ensemble. We consider rein-
forcement learning ensembles, where the members are neural networks. In
this context we study a new algorithm for ensemble subset selection in re-
inforcement learning scenarios. The aim of the proposed learning strategy
is to minimize the Bellman errors of the collected states. In the empirical
evaluation, two benchmark applications with large state spaces have been
considered, namely SZ-Tetris and generalized maze. Here, our selective
ensemble algorithm significantly outperforms other approaches.

1 Introduction

Whereas ensemble or committee-based models have been successfully applied to
supervised [1, 2], semi-supervised and active learning [3, 4], in Reinforcement
Learning (RL) not much research has been done to combine agents in a com-
mittee. One of the first attempts were done in [5], where fitted Q iteration
used ensembles of regression trees. In [6], values learned from different RL al-
gorithms were combined in joint decisions. However, Q-Learning single learners
seemed to outperform committees in the more difficult problems. In another
work [7, 8], it has been analytically shown that a committee with joint decisions,
with estimated values from agents with function approximator (FA), can perform
more rewarding decisions than a single agent. Each agent were trained by the
same RL method. An RL committee benefits from the diversities on the value
estimations, both from unstable value estimators and from large state spaces.
Empirical evaluations with SZ-Tetris and generalized maze confirmed the an-
alytical results [7]. In a selective ensemble, only a subset of a large ensemble
are taken with the aim of performing better predictions. In [9], this were done
both for classification and regression. Later on, unlabelled data were included
to improve the performance of a selective ensemble [10]. Up to now, there were
no attempts to combine selective ensemble learning with RL.

Our contribution in this paper is a novel method for subset selecting in a large
ensemble of agents. The aim is to minimize the absolute differences between the
estimated values and the Bellman equation of the collected states. With this
selection, the combined value estimations are more consistent and, thus, more
accurate. In case of an RL control problem, it will result in a higher total
reward. Each of the agents does the value estimations with an FA, trained by
an RL method. We empirically evaluate the method on generalized maze and
on SZ-Tetris.
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2 Neural Network Ensembles

Given is a set D = {A1, Aa,..., Ay} of M agents. Each agent is represented by
an FA with weights 6,,, and trained through some RL method, including Value
Iteration, Temporal-Difference (TD) or Monte-Carlo (MC). In this work we focus
on Multi-Layer Perceptrons (MLP) as FA. After the training of T iterations or
episodes, the performance of these M agents is tested keeping their weights fixed.
From now on this is called simulation phase, benchmark or testing in contrast
to the training phase, where the agents learn and update their weights. In the
simulation phase, the agents can act as a committee and perform joint decisions.
The Joint Average policy is:

74V (s) = arg max [ Z ng(s,a)} (1)

acA(s) meD

where s is the current observed state, A(s) is a discrete set of actions available
in state s and Q,, (s,a) is the estimated value of agent m. Further, the Joint
Majority Voting policy is:

V09 (s) = arg max Z Nm(s,a)} (2)
acA(s) meD

where Np,,(s,a) is one if the agent m votes for action a in state s, else zero.

3 Selective Neural Network Ensembles

Out of the set D with agent indices of a large ensemble, we can select a subset
D c D, |D| = M, by solving the following quadratic programming problem:

E(w) = Zﬁ(s)[ Z Wi Z 04771(3,a)em(s,a)}2 (3)

s€S meD a€A(s)

under the constraints ZmeD Wy = 1, Wy, >0, wy, < ﬁ, VYm, where S is a dis-
crete set of states, p(s) the probability to observe the state s, ZaEA(s) am(s,a) =
1,Vs,¥m, en(s, a) is a bounded real-valued error of agent m for state-action pair
(s,a) and w are Lagrange multipliers. Set D gets the indices of the agents with
the M highest weights w,, > 0. This forms the selective ensemble. As the
true values Q(s,a), and thus the true errors é,,(s,a) = Q(s,a) — Qq,, (s, a), are
naturally unknown in an RL problem, we instead consider Bellman errors:

En(s,0) = 3 p(s,0,8)[rls,0.5) + 0wl @)1Qu, ()] — Qo (s,0)

s'eS a’€A(s")
(4)

where r(s,a,s’) is the immediate reward for taking action a in state s and
observing the next state s’, m,,(s’,a’) is the probability to select action a’ in
state s’ and 0 < v < 1 is the discounting factor used for learning the Q-values.

106



ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Algorithm 1 Selective Neural Network Ensembles

Input: Set D with M indices of trained agents, selective ensemble size M <M,
state collection parameter €.,;, maximum number of ranked actions n 4, error
threshold 6., problem with Markov property, discounting value ~, set ST
with starting states, testing iterations T, prediction: fixed policy 7, control:
Joint Average (1) or Joint Majority Voting (2) policy 7 for exploiting states

Output: benchmark value or total reward

1: Collect states and state probabilities p(s): Perform simulation in given en-
vironment with committee in set D and policy 7, collect observed state if
random value € [0, 1) is smaller than €.

2: Calculate the errors of agent m for the collected states using (4), Vm.

3. Get set D C D: Perform selective ensemble learning with agents in set D by
minimizing (3), using errors from last step, O, n4 and state probabilities
p(s). Error weights are (5) (Voting, or prediction) or (6) (Average). Choose
M indices with highest Lagrange multipliers wy,.

4: Get benchmark value: Perform simulation with committee in set D, starting
states ST, T iterations and policy 7

In case the RL model is not known, the p(-), r(-) and, if necessary, 7, (-) values
can be estimated by sampling state-action pairs from the environment. Further,
we consider hard errors:

1, if |em(s,a)] > Oerr
em(s,a) = {0 else

where e, is the error threshold parameter. The error weights o, (s,a) in (3)
depend on the desired joint decisions, for a Joint Majority Voting policy it is:

1, if a = argmaxy m,,(s,b)
m(5a) = {0 e ' (5)

and for a Joint Average policy it is:

oA (s.q) = — Cm(5:0)
n(sa) > be(s) Cm(8,0) ()
with
em(sa) = 4% if rank, [Qg,, (s, )] < [A(s)| — min(na, | A(s)])
m rank,[Qy,, (s,-)], else

where n 4 is the maximum number of ranked actions and rank,[Qg,, (s, -)] is the
rank of action a in state s for agent m. With (5), only the errors of the agents
with the best actions, and with (6), the errors of the agents with up to na best
actions have a non-zero weight. The reason is that in (1), only a single action
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per agent, and in (2), all actions of all agents contribute to the joint decisions.
By minimizing cost function (4), agents are selected whose value estimations are
more consistent. A state, observed by a committee, is collected with a probability
of €co1. The complete procedure is described in Algorithm (1).

4 Experiments

We evaluated the methods on two applications with large state spaces. In both
applications, we used a 2-layer MLP as FA with tanh(:) in the hidden layer,
and the linear function in the output layer, as activation functions. For each
application, we trained 100 agents in parallel with randomly initialized weights.
A committee (M > 1) either consists of randomly selected M agents out of
the 100 without replacement, or performed selective ensemble learning with 50,
randomly drawn from the 100, to select the best agents (M is 'Sl in result
tables). 50 runs per committee. For the selective ensemble learning, the state-
action pairs were collected with randomly chosen 50 agents and with €.,; = 1.0
(generalized maze) or €., = 0.3 (SZ-Tetris).

4.1 Generalized Maze

In the generalized maze problem, an agent tries to find the shortest path in a
maze with some barriers and one goal. We consider a 5 X 5 maze with 3 — 5
randomly placed barriers. Out of 1000 generated unique mazes, 900 are kept
fixed as a training set and the rest as a validation set. In the training phase, a
maze of the training set is randomly selected for each episode. Barriers and the
goal are terminal states. The starting set ST includes all non-terminal states
of the selected maze. The agent is not allowed to leave the maze. State-action
values are learned with RG-SARSA (on-policy updates). With a probability of
0.3, the agent moves one state further to the north, if not blocked by a barrier
(up-wind). The agent gets a reward of 1 if state s’ is the goal or 0 if s’ is a barrier
or non-terminal state. The discounting value is set to v = 0.9. In the simulation
phase, all valid starting positions of each maze in the validation set are evaluated
and the total reward is calculated. It is repeated 10 times per starting position.
We roughly guess that the total reward, averaged over all mazes, is at ~ 15.
The MLP has 5 neurons in the hidden layer and 150 input neurons, where 25
are for the barriers, 25 for the goal position and 25 per action for the agent
position. Learning rates are optimized for a single agent, a = 0.01. Results for
a single agent (M = 1), and the committees (M > 1) with the softmax action
selection strategy with 7 = 0.08 are in table 1. Evaluated is the total reward,
measured in a benchmark setting after 2.5 - 10° to 25 - 10® training iterations.
The second column denotes the policy used in the benchmark (S = Single, A
= Average and V = Majority Voting). Selective ensemble sizes (from 2.5M to
25M), Average: 20, 30, 15, 15, Voting: 25, 15, 30, 30. The differences between
the results of the selective ensemble and the large ensemble with M = 30 are
statistically significant (p < 0.02). The selective ensembles are better than the
large ensembles, both in terms of the total reward and in the ensemble size.
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M | © | reward 2.5M | reward 5M | reward 15M | reward 25M
1 S| 12.10+0.81 | 13.36 £0.37 | 13.80+0.34 | 13.87 +0.32
5 | A| 13.62+0.33 | 14.05+0.33 | 14.39+0.27 | 14.444+0.23
30 | A | 1417+0.12 | 14.37+0.11 | 14.59+0.05 | 14.67 +0.06
50 | A | 14.24+0.09 | 14.34 +0.08 | 14.61 +=0.07 | 14.69 & 0.04
Sl. | A | 14.294+0.08 | 14.47+0.06 | 14.72+0.06 | 14.79 £ 0.06
5 | V| 13.73+£0.29 | 14.31 £0.15 | 14.59+0.10 | 14.62 4+ 0.08
30 | V| 14.28+0.08 | 14.56 =0.08 | 14.73 +0.06 | 14.85 %+ 0.05
50 | V| 14.33+0.09 | 14.56 =0.06 | 14.78 =0.05 | 14.85 4+ 0.04
Sl. | V| 14.37£0.06 | 14.68 0.07 | 14.84 £0.04 | 14.90 £ 0.03

Table 1: Empirical results with Generalized Maze.

4.2 SZ-Tetris

In stochastic SZ-Tetris, an agent places tetrominos on top of already placed
tetrominos and tries to complete rows. The board has a width of 10 and a height
of 20. S-shaped or Z-shaped pieces randomly appear with equal probabilities.
The agent chooses a rotation and horizontal position of the piece within the
board. If the piece does not fit on the board, then the game ends. SZ-Tetris with
its two tetrominos, out of the seven available, is considered to be the hard core
of Tetris [11]. In the benchmark-type setting [12], the agent gets one point per
completed row. Quality criterion is the sum of completed rows until the board
is full. The best learning agent reached a score of 133 [12]. Only states with a
full board are terminal states. If rows are completed, then they are immediately
removed. The starting set ST only includes the empty board. (Half-) state
values are learned with TD(A = 0.5). On each step, the agent receives a reward
of r(s) = exp(—pF-number of holes in s), with § = 1/33 and counting the number
of holes below the pieces (column-wise) in a state s. The discounting value is set
to v = 0.95. The MLP has 5 neurons in the hidden layer and 330 input neurons,
whereas 180 are the discretized height differences and 150 are the discretized
number of holes (more than 150 holes are treated like 150 holes). Learning
rates are optimized for a single agent, & = 0.001. The results with the e-greedy
exploration strategy with ¢ = 0.04 are in table 2. Evaluated is the number of
cleared lines, measured in a benchmark setting after 0.5 - 10° to 5 - 10° training
iterations. The scores are averaged over 100 repeated tests (games). Selective
ensemble sizes (from 0.5M to 5M), Average: 20, 40, 15, 5, Voting: 30, 35, 25,
25. The differences between the results of the selective ensemble and the large
ensemble with M = 30 are statistically significant (p < 0.02). The selective
ensembles show better results than the large ensembles, both in terms of the
total reward and in the ensemble size.
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M | 7 | score 0.5M score 1M score 3M score b5M

1 S | 88.404+22.1 | 108.6 £19.7 | 125.8+£13.9 | 129.7+ 114
5 | A | 127.64+12.3 | 135.24+8.50 | 144.1 £6.60 | 147.0 £ 6.60
30 | A | 135.9+7.20 | 150.2+£7.10 | 146.2+4.40 | 149.6 = 5.50
50 | A | 139.14+7.00 | 151.24+5.50 | 145.1 +£3.20 | 149.7 + 3.50
SL. | A | 142.0£+6.60 | 154.1+7.10 | 153.0 +6.60 | 152.4 + 6.20
5 | V|10994+12.7 | 124.6+10.9 | 137.8£8.80 | 140.8 £ 7.00
30 | V| 130.84+7.00 | 141.24+6.20 | 144.1 =4.70 | 148.3 £ 5.00
50 | V | 132.54+5.90 | 142.5+6.50 | 144.4+4.40 | 150.8 +4.00
SL. | V| 137.7£8.20 | 145.6 £7.00 | 152.3£6.20 | 152.4 +5.20

Table 2: Empirical results with SZ-Tetris.

5 Conclusions

We described a method to select an informative subset of agents from a large
ensemble with the aim to achieve more accurate value estimations. To our
knowledge this is the first attempt being made to combine selective ensemble
learning and RL. The algorithm generally applies to a wide range of RL problems,
including environments with large state spaces, but with the restriction that
either the RL model is known, or the RL model parameters can be estimated by
sampling state-action pairs from the environment. In the empirical evaluation,
the selective ensembles significantly outperformed the full ensembles.
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