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Abstract. Technology has been successfully applied in sports, where 
biomechanical analysis is one of the most important areas used to raise the 
performance of athletes. In this context, this paper focuses on swim velocity profile 
identification using Radial Basis Functions Neural Networks (RBF-NN) trained by 
the Gustafson-Kessel clustering combined with a novel Dynamic Self-adaptive 
Multiobjective Harmony Search (DS-MOHS). One study case is analyzed, from 
real data acquired of an elite female athlete, swimming breaststroke style. Better 
results are obtained by DS-MOHS when compared with standard multiobjective 
harmony search in terms of accuracy and generalization of the model. 

1 Introduction 

From 1980s, Artificial Neural Networks (ANN) have received considerable attention 
from researchers, as they presented themselves as great tools for nonlinear 
identification and time series forecasting. Radial Basis Functions Neural Networks 
(RBF-NN) are a special type of ANN which are formed by three layers, namely (i) 
input layer, (ii) hidden layer and (iii) output layer.  RBF-NN has its most general form 
when all parameters are obtained through supervised learning to define the output 
weights [1]. 
 A stochastic optimization algorithm called Harmony Search (HS) was proposed 
in 2001 [2] and has found many successful applications for several problems, 
including NN training [3]. Several adaptations of the original HS algorithm have been 
made so as to obtain better quality solutions. Among them, dynamic self-adaptive 
approaches were set, so as to adaptively set the search parameters during the search 
procedure [4] and multiobjective versions of the original HS have also been proposed 
in the literature [5]-[7]. 
 One of the more complex areas of interest in biomechanics is the study of 
human swimming propulsion. In a recent study [8], the authors investigate the use of 
differential evolution algorithm applied to RBF-NN training for swim velocity profile 
identification.  
 The present paper proposes the use of the RBF-NN training through the 
Dynamic Self-adaptive Multiobjective Harmony Search (DS-MOHS) approach for 
time series forecasting applied to the identification of swim velocity profiles. The 
overall identification procedure based on RBF-NN training uses the Gustafson-Kessel 
(GK) clustering algorithm [9], multiobjective optimization and the Penrose-Moore 
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pseudo-inverse. The efficiency of DS-MOHS is compared to the classical MOHS 
approach. 
 The remainder of this paper is organized as follows. Section II covers 
background information multiobjective optimization, MOHS and DS-MOHS. Section 
III gives a brief mathematical description of RBF-NN models and its proposed 
training procedure. Section IV describes a study case to the swimming velocity 
identification. Section V, provides the results and discussions. The conclusions and 
future research directions are stated finally at Section VI. 

2 Harmonic Search for Multiobjective Optimization 

The HS algorithm emulates the musician performance when seeking the best of 
harmony (in an aesthetic sense). Thus the HS algorithm seeks the best state, that is, 
the global optimum, determined on the basis of the objective function given by the 
current problem. The following steps define the HS optimization procedure [10] as 
proposed by Geem et al. in [2], where the full description about the procedure can be 
found: 

 Step 1. Initialization of the algorithm. The optimization problem is given by 
minimize f(x), subject to xi  Xi,   i = 1, ..., N. The control parameters, namely (i) The 
size of the harmony memory matrix (HMS); (ii) the harmony memory considering 
rate (HMCR); (iii) the pitch adjusting rate (PAR); and (iv) stopping criterion 
(maximum number of improvisations tmax) are specified in this step.  

 Step 2. Random initialization of the harmony memory. The harmony memory 
(HM) keeps all vectors of decision variables found. It is initialized with randomly 
generated solution vectors using a uniform distribution in the present step. 

 Step 3. New harmony improvisation. A new harmony vector 

),...,,( 21
new
N

newnewnew xxxx   is generated by improvisation based on the following rules: 

(i) memory consideration, (ii) pitch adjustment, and (iii) random selection. 

 Step 4. Update HM. If the new harmony is better than any of the ones contained 

in HM (in terms of the objective function f(x)), newx  is included in the harmony 
memory and the worst harmony in HM is excluded. 

 Step 5. Repeat Steps 3 and 4 until the maximum number of improvisations 
(stopping criterion) has been made. 

2.1 Multiobjective Harmony Search 

In order to cope with multiobjective problems, the original HS algorithm previously 
stated has been adapted to MOHS. The MOHS changes Steps 1 and 4 from standard 
HS, as stated below. 
 Step 1: Initialization of the algorithm. For a multiobjective optimization task, 
the following problem definition is to minimize fq(x), subject to xi  Xi, q = 1, …, M;  
i = 1, ..., N, where fq(x) is the q-th objective function and M is the total number of 
objective functions. The control parameters HMS, HMCR, PAR and tmax are also set. 
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 Step 4: Update HM. Whenever the new harmony newx  is found to be better 
than any contained in HM, it is included in the harmony memory and the worst 
harmony in HM is excluded. In order to rank the solutions in HM, MOHS uses the 
concept of non-dominance and crowding distance (as in NSGA-II [11]) at each 
improvisation. 

2.2 Dynamic Self-adaptive Multiobjective Harmony Search 

The use of dynamic self-adaptation for adjusting the control parameters of HS has 
been developed recently in [4]. The definition of the parameters PAR and bw (it is an 
arbitrary distance bandwidth in the i-th dimension and r is a random number 
generated using uniform distribution in the range [0,1]) are automatic and 
independent of the iteration count (in opposition with other self-adaptive techniques). 
 The concept of Best-to-Worst ratio (BtW) in multiobjective optimization 
measures quality of the solutions stored in HM in approximating its current best in 
each objective and is calculated as 

 
)(

)(
w

i

b
i

i xf

xf
maxBtW   (1) 

where fi(xb) and fi(xw) are the best and worst value of the i-th objective function 
(restricting to the case of minimization of all M objective functions). BtW is 
calculated before each iteration. The PAR control parameter is then set dynamically 
based on the actual BtW value, as follows [4] 
 maxmaxmin PARBtWPARPARPAR )(   (2) 

where PARmin and PARmax may be set to small value greater than zero (e.g. 0.1) and 1, 
respectively. The PAR value is thus set according to the quality of the solutions in the 
HM. Whenever the BtW value decreases, conversely the PAR value increases in order 
to make use of the local exploitation ability of HS – making new modifications to 
xnew. If BtW increases, what means that there are higher quality solutions in the HM, 
PAR decreases to emphasize exploration and causing perturbation in the current HM 
[4]. 
 The pitch bandwidth is adjusted on the basis of the standard deviation of the 
solution vectors in the memory along for each dimension [4] 

 )i
i MC.StdDev(Hbw   (3) 

where StdDev(HMi) represents the standard deviation of the i-th dimension among all 
solutions contained in the HM, and the factor C is adopted as [4] having AccRate as 
the number of accepted improvisations in HM in the last 100 iterations, AccCth as the 
threshold (set as 20%) at which C starts to decrease [4]. 
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 Equations (1)-(4) are applied at each harmony improvisation in Step 3, in order 
to calculate the current PAR and bw values to be applied in the process. 
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3 Radial Basis Functions Neural Networks 

Radial Basis Functions Neural Networks (RBF-NN) is a type of artificial neural 
networks, where the Gaussian function is the most widely used radial basis function. 
 The proposed RBF-NN training adjusts the Gaussian basis function centers 
using the GK clustering algorithm [9]. The multiobjective optimization methods 
optimize the widths and locally the centers of the Gaussian basis functions. In the 
present work, the lower and upper bounds for the RBF centers are set respectively as 
80% and 120% of the minimum and maximum values of the centers obtained by the 
GK clustering algorithm. 
 The training procedure splits the observed data into training (50%), validation 
(25%) and test (25%) sets. Being so, the multiple correlation metric defined as  
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where Ns is the total number of samples, y(t) is the actual data, y  its average and (t)ŷ  

is the output predicted by the model. For training and validation phases we have 2R tr  

and 2R v  respectively. 

The following objective functions are defined according to Step 1 for both MOHS and 
DS-MOHS. 
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 Being so, the training procedure aims at accuracy of the model and its 
generalization. It is important to mention that a value for R2 between 0.9 and 1.0 is 
considered sufficient [12]. 

4 Data Acquisition System for Swim Velocity Profile 

Technology can be used as a complementary tool to give important information which 
will be the difference in the competition environment, where the performance of high 
level athletes must be sought at all times. With the purpose to reach a technologic tool 
to support swim velocity profile identification, a data acquisition system was used to 
acquire data from breaststroke style swam for 25 meters by an elite female swimmer. 
For details, please refer to [8]. 

5 Simulation Results 

The parameters set for MOHS are 100, 0.95, 0.5 and 10% of each decision variable 
range for HMS, HMCR, PAR and bw, respectively. For sake of comparison, the 
parameters for DS-MOHS are set as 100 and 0.95 for HMS and HMCR respectively. 
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Each algorithm is tested in 30 runs with different initial conditions and termination 
criterion of 300,000 improvisations. It has been tested the algorithm progressively 
increasing the number of neurons in the hidden layer of the RBF-NN from 4 to 9. The 
best trade-off solution is termed hereafter as the one with the least harmonic mean of 
the fitness values obtained after normalization. 
 Table 1 shows the mean and standard deviation values of the Hypervolume 
(HV) [13] and Euclidian Distance (ED) indicators obtained by MOHS and DS-MOHS 
after 30 runs, as well as the multiple correlation coefficients for training, validation 
and test phases obtained by the most trade-off solution from DS-MOHS. We can see 
that, for all number of neurons tested, DS-MOHS outperforms MOHS in both HV and 
EV metrics. It is possible to see that while there is a trend for the values for the 
training and validation phases to grow according to the number of neurons, the value 
for the test phase decreases. This fact suggests the compromise of complexity and 
generalization. In Fig. 1(a) and (b) can be seen the one-step-ahead prediction for the 
most trade-off solution obtained by DS-MOHS and the error signal to the same case. 
 By comparing the results in this paper to the previous work [8], it can be 
verified that the new approach using DS-MOHS has provided better approximation 
results for the breaststroke style than the MDE (Modified Differential Evolution). 

MOHS DS-MOHS DS-MOHS 
(best trade-off solution) 

No. of 
Neurons 

HV ED HV ED 
2
trainingR  2

validationR  2
testR  

4 0.51±0.05 0.61±0.05 0.62±0.12 0.47±0.12 0.9338 0.9736 0.9280 

5 0.59±0.04 0.52±0.02 0.69±0.09 0.43±0.08 0.9351 0.9742 0.9139 

6 0.67±0.04 0.50±0.06 0.77±0.07 0.40±0.07 0.9359 0.9744 0.9092 

7 0.61±0.04 0.53±0.05 0.76±0.06 0.38±0.06 0.9406 0.9741 0.9135 

8 0.65±0.03 0.47±0.04 0.77±0.07 0.34±0.07 0.9431 0.9781 0.8895 

9 0.75±.03 0.35±0.06 0.90±0.07 0.18±0.06 0.9468 0.9793 0.8232 

Table 1: Hypervolume (HV), Euclidean Distance (ED) metrics and multiple 
correlation values for the best trade-off solution for the breaststroke time-series. 
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Fig. 1: (a) One-step-ahead prediction results and (b) error for the best trade-off 
solution found by DS-MOHS for training, validation and test phases using 4 

neurons. 

641

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.



6 Conclusion 

The present work showed the application of RBF-NN trained with multiobjective HS 
to time series modeling of real data acquired from a female elite athlete. Moreover, 
HS algorithm has been extended to cope with multiple objectives and further 
improved to a novel dynamic self-adaptive version with less project parameters. 
 Based on previous [8] and the present work, future research will focus on the 
further development of new technologies for the identification of swimming velocity 
profile, which may be applicable to e.g. the estimation of the parameters of the 
swimmer, reduction of resistance with water and the improvement of the movements 
of the swimmer. 
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