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Abstract. One of the most fundamental data processing approach is the cluster-
ing. This is even true in distributed architectures. Here, we focus on the problem of
designing efficient and fast K-Means approaches which work in fully distributed,
asynchronous networks without any central control. We assume that the network
has a huge number of computational units (even orders of magnitude more than the
number of computational units in a general cloud). Our approaches apply online
learning clustering models which take different random walks in the network, while
they update themselves using the data points stored by the computational units, and
various ensemble techniques combine them to get a faster convergence. We define
different instantiations of the general framework that apply various ensemble tech-
niques. We evaluate them empirically against several state-of-the-art distributed
baseline algorithms in different computational scenarios. The experiments show
that our methods are not only robust against network failure, but they also provide
accurate clustering and converge extremely fast.

1 Introduction
The continuously increasing amount of data—which we want to access from any of our
computational devices (mobiles, tablets, and PCs), share and comment—raises the need
for novel distributed architectures. Typical examples are the Map-Reduce [1] based
approaches as general purpose cloud computing frameworks and the GraphLab [2] for
performing distributed machine learning.

Although these architectures scale very well, their scalability still has a strict upper-
bound, which could be a serious issue considering a long-term time horizon with the
exponential spreading of different mobile and wearable computers in the near future.
Additionally, the application of these solutions inherently suffers from privacy issues
due to the fact that the data leaves the device of the data owner.

Here, we introduce a novel system model that uses a huge number of personal com-
putational units without additional elements (that is, background infrastructure is not
required). We show that with a careful design (considering both the algorithmic and the
system aspects of the design space), very efficient algorithms can be proposed on the
top of that system model. Particularly, we design efficient K-MEANS algorithms in the
fully distributed system model (described in Sec. 2).

Our particular contribution is twofold. First, we implement the well-known K-
MEANS clustering algorithm in the Gossip Learning Framework (GOLF) [3]. Second,
we propose two ensemble learning based algorithm variants which dramatically speed
up the convergence of the original algorithm. Finally, we provide a thorough empirical
evaluation of the proposed algorithms using different baseline approaches.
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2 Background and System Model
We considered the fully distributed, asynchronous networks as our system model. This
model is significantly different from the system models of the sensor networks, the
GRIDs, the clouds and even the P2P networks, where any kind of synchronization (even
heart beat synchronization) is allowed.

We assume that our system model consists of a very large number—even billions—
of nodes (computational units or peers, which are typically PCs, mobiles or smart de-
vices). We also assume that these nodes are connected via a network (Internet) and each
of them has a unique address. The nodes can communicate with a limited number of
other nodes (called neighbors), whose address is known locally, via messaging. The
set of neighbors of a node can change over the time (dynamic network). The peers as
graph nodes and the neighborhood relation defined above as edges define a graph called
overlay network. All the communication is performed along the edges of this graph.

We assume that a service, called peer sampling service, exists which is responsible
for managing the overlay network. We require that this service provides the addresses
of uniform random nodes from the network that are probably online at the time of the
request. We applied the NEWSCAST protocol [4] as the peer sampling service.

We do not make any assumption about the reliability of the network. That is, mes-
sages can have arbitrary delay or even can be lost. Additionally, we do not make any
synchronicity assumption, meaning that we cannot perform any global operations re-
garding the processing time (e.g. waiting until each node ends some kind of activity).
Broadcasting of the messages is not allowed as well. The nodes can join and leave the
network at any time without prior notification (churn). Moreover, there is no network
infrastructure in the sense that each node has an equal role and they apply exactly the
same protocol.

As for data model, we assume that each node stores its local data and the amount of
this data is insufficient to perform any local statistical processing. Moreover, we assume
that this data never leaves the node that stores it. This restriction clearly allows us to
support applications that require extreme privacy. We also assume that the clustering
of new data points can be performed locally; that is, the clustering models have to be
available in the nodes at any time.

3 Related Work
In [5], a distributed clustering method was presented, where each node contains only
one data point. This data is used for the local initialization of the clustering models.
Each node iteratively receives centroids that are added to a local model, then in the
oversized models it merges the closest centroids. Since this approach is consistent with
our data model, we consider it as a baseline method in our evaluations and refered to it
as GREEDY-MATCHING-K-MEANS.

Considering the P2P environments, one of the first K-MEANS clustering was de-
scribed in [6]. Here, the same randomly initialized centroids were set for each node.
Then, the algorithm exchanges and aggregates cluster assignments between the direct
neighbors. These operations require local synchronization, hence this approach is un-
suitable for our system model.

Another P2P K-MEANS approach was proposed in [7]. The algorithm iteratively
performs local assignment and global centroid recomputation using the PUSH-SUM [8]
averaging algorithm. As this protocol is consistent with our data and system models,
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Algorithm 1 The GOLF Learning Scheme
1: initModel()
2: loop
3: wait(Δ)
4: peer ← getRandomPeer()
5: send cModel to peer

6: function ONRECEIVEMODEL(m)
7: cModel ← createModel(m, pModel)
8: pModel ← m

Algorithm 2 SIMPLE-K-MEANS algorithm
1: function UPDATE(m)
2: x ← getLocalData()
3: if m.hasEmpty() then
4: m.addCentroid(x)
5: else
6: idx ← performClust(m,x)
7: c ← m.centroids(idx)
8: m.centroids(idx) ←

(1 −m.α) · c+m.α · x
9: returnm

10: function PERFORMCLUST(m,x)
11: minDist ← ∞
12: for c ∈ m.centroids do
13: dist ← euclideanDist(c, x)
14: minDist ← min(dist,minDist)
15: returnminDist.centroid.index

16: function CREATEMODELNAIVE(m1,m2)
17: return update(m1)

� m2 is not used here

we use it as a baseline method (referred to as FTD-K-MEANS) in our evaluations.

4 Algorithms
The basic skeleton of GOLF is shown in Alg. 1. This algorithm runs on each node of
the network. The protocol has two distinct parts, namely the active part (in lines 1-5)
and the message handler part (the function ONRECEIVEMODEL).

The active part is mainly responsible for performing the periodic activities. First,
in the initialization (function INITMODEL) the value of the current model (variable
cModel) is initialized either by loading the previous value or—on the first time run—
initializing a new one. In the main loop of the algorithm the protocol periodically,
denoted by Δ (line 3), selects a random neighbor (line 4) using the peer sampling
service, and sends a copy of its current model to that neighbor (line 5). We modeled the
waiting interval as a random variable N (μ, σ), where μ = Δ and σ = Δ/10.

The message handler function of GOLF runs when a node receives a model. In this
function the received model is passed through the abstract function CREATEMODEL to-
gether with the previously received, non-updated model referred to as pModel (line 7).
The resulting new model is then stored in the variable cModel. The various implemen-
tations of the function CREATEMODEL result different approaches of the distributed
K-MEANS algorithm. Finally the received model m is stored in variable pModel for
further processing (line 8).

The function UPDATE (Alg 2) is responsible for improving the online clustering
model using the data point available on the current node. While the model is not fully
initialized, it collects the data point as centroid (at line 4). When each centroid of the
model m becomes valid—that is, the model is fully initialized—the function UPDATE
improves the closest centroid c to the given data point x by computing the moving
average of the centroid c and the point x applying the parameter α of the model as
weight (between lines 6-8). Here α is the coefficient of the moving average which
determines how fast the older data points are discounted. In our experiments, we set
α = 1/125.

The clustering function PERFORMCLUST, shown in Alg 2, simply finds the index
of the closest centroid from the model to the data point by applying Euclidean distance.

Now we describe how these functions can be used in the above mentioned GOLF
skeleton. One can get our simplest K-MEANS variant, referred to as SIMPLE-K-

101

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.



Algorithm 3 ENSEMBLE-K-MEANS algorithms
1: function CREATEMODELENS(m1,m2)
2: return update(merge(m1,m2))

3: function MERGE(m1,m2)
4: m ← createEmptyModel()
5: ifm1.hasEmpty() orm2.hasEmpty() then
6: u ← m1.centroids ∪m2.centroids
7: m.centroids ← shrink(m.K, u)

8: else
9: π ← match(m1, m2)

10: for i ∈ centroidindices do
11: c1 ← m1.centroids(i)
12: c2 ← m2.centroids(π(i))
13: m.centroids(idx) ← avg(c1, c2)
14: returnm

MEANS algorithm, by instantiating the CREATEMODEL function of the GOLF as the
function CREATEMODELNAIVE, as shown in Alg 2. This implementation is quite
straightforward and ignores the ensemble component of GOLF by calling directly the
function UPDATE with the first model leaving out the second model parameter.

Implementing the function CREATEMODEL of GOLF, as proposed in Alg. 3 (called
CREATEMODELENS), we get more sophisticated distributed K-MEANS variants that
exploit the benefits of the ensemble component of GOLF. First, the implementation
applies a function MERGE, which is responsible for combining two K-MEANS models
into one. After combining the models, the function UPDATE of K-MEANS (see Alg. 2)
is applied on the resulting model.The function MERGE is shown in Alg. 3 as well. If
either of the models is not initialized (condition at line 5) the function MERGE collects
the centroids by unifying the centroids of the two original models (at line 6). Then,
the resulting centroid set is shrunk to a K–sized set by randomly removing centroids
(at line 7). If both parameter models are initialized—that is, they store exactly K valid
centroids—the function MERGE performs an assignment among the centroids by call-
ing the function MATCH (line 9). This assignment is encoded by a permutation of the
centroid indices from model m2. The function MERGE produces a new model that con-
tains centroids, which are the averages of the centroids of the original models along the
assignment ( see lines 9-13 of Alg. 3).

By implementing various MATCH functions, one can get different ensemble based
fully distributed K-MEANS algorithms. Here we implemented two approaches. The
first one is the so-called IDENTITY-MATCHING-K-MEANS, which simply applies the
identity mapping as a matching. This is clearly a naive approach, as it does not consider
any similarities among the centroids of the two models.

We implemented a more sophisticated matching function as well that solves the
assignment problem among the centroids of the two models analytically. That is, it
finds a coupling among the centroids of the two models that minimizes the sum of
the distances between the coupled centroids. This problem can be solved efficiently
by applying the Hungarian method [9]. Here this algorithm is called HUNGARIAN-
MATCHING-K-MEANS.

5 Experimental Evaluation
In our experiments we applied various K-MEANS implementations. Accordingly, each
of these methods converges to the same optimal solution (aside from the variance of
the empirical evaluation). In this way, the only factor that we can examine in terms
of performance is the speed of the convergence. The algorithms used as baselines
were the following: WEKA K-MEANS [10], SIMPLE-K-MEANS (introduced in Sec. 4),
GREEDY-MATCHING-K-MEANS [5] and FTD-K-MEANS [7].

In our evaluations, we used three well-known benchmark datasets, namely the Reuters
(Dexter), the Spambase, and the Malicious URL’s datasets taken from the UCI repos-
itory [11]. In the case of Malicious URL’s dataset, we applied a feature selection by
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Fig. 1: Comparison of various K-MEANS results in non-failure (upper row) and in failure (lower row) scenar-
ios. We also present the results of the HUNGARIAN-MATCHING-K-MEANS from non-failure scenario with
lighter color in the lower row.

keeping the ten most informative features. As an evaluation metric we applied the Nor-
malized Mutual Information (NMI) [12] performance measure.

The experiments were carried out in the event based engine of the PeerSim simula-
tor [13]. In each experiment the size of the network was equal to the size of the used
dataset. In our experimental scenarios we modeled message drop, message delay, and
churn. The drop probability of each message was 0.5. Message delay was modeled
as a uniform random delay from the interval [Δ, 4Δ], where Δ is the gossip period,
as shown in Algorithm 1. We also modeled realistic churn provided by a probabilistic
model originally proposed in [14].

5.1 Results
We summarize our main results in Fig 1. Let us first discuss the ”No failure“ sce-
narios. As can be seen, the proposed algorithms (IDENTITY-MATCHING-K-MEANS
and HUNGARIAN-MATCHING-K-MEANS) and one of the baseline algorithms (the
FTD-K-MEANS) converge in the cases of all the benchmark datasets. We also see
that the HUNGARIAN-MATCHING-K-MEANS algorithm has by far the fastest conver-
gence speed (the x axis is logarithmic), followed by IDENTITY-MATCHING-K-MEANS
in terms of the convergence speed, and FTD-K-MEANS comes third. Surprisingly,
the SIMPLE-K-MEANS algorithm does not converge in one case out of the three, and
the GREEDY-MATCHING-K-MEANS does not converge at all. Moreover, the conver-
gence speed of the SIMPLE-K-MEANS algorithm is far from being acceptable. Based
on these, we can draw several conclusions. First, the HUNGARIAN-MATCHING-K-
MEANS, IDENTITY-MATCHING-K-MEANS and FTD-K-MEANS algorithms seem to
be the most promising (in decreasing order based on their convergence speed) in our
system and data model. Second, the Reuters dataset, which has by far the highest di-
mensionality in the benchmark datasets, seems to provide the most complex learning
task, since two of the baseline algorithms do not converge on it. Third, nevertheless,
the GREEDY-MATCHING-K-MEANS algorithm fits into our data model, it seems that
our system model makes it an inappropriate choice.

Turning to the discussion of the ”All failures“ scenarios, we should mention that two
of our baseline algorithms (GREEDY-MATCHING-K-MEANS and FTD-K-MEANS) are
inappropriate in this setting, hence we ignored them. In the lower row of Fig. 1, we see
the results corresponding to the failure scenarios. The main observations here are that
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our proposals achieve almost the same convergence speed as that in the case of non-
failure scenarios (the light red line denotes the convergence speed of the HUNGARIAN-
MATCHING-K-MEANS algorithm in that setting). The HUNGARIAN-MATCHING-K-
MEANS remains the fastest algorithm, while the IDENTITY-MATCHING-K-MEANS is
the second fastest.

6 Conclusion
In this paper, we proposed two instantiations of the well known and widely used K-
MEANS clustering algorithm that work in fully distributed environments. With the
presented methods the nodes in a P2P network can continuously improve the perfor-
mance of the models by local updates, and the models are available for clustering at any
time without extra communication. Our experiments clearly showed that the proposed
methods can achieve the expected clustering performance and converge extremely fast.
Comparing with various baseline algorithms, the HUNGARIAN-MATCHING-K-MEANS
method achieved the fastest convergence speed on real datasets even in environments
with extreme network failures.
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