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Abstract. This paper proposes the use of the clustering method called Weighted 

Fuzzy C-means to solve the problem of mixing matrix estimation in 

underdetermined source separation based on sparse component analysis. The 

performed comparative analysis shows that the approach has a significant 

application potential, especially if the distributions of the columns of the mixing 

matrix has a non-uniform character. 

1 Introduction 

The problem of Blind Source Separation (BSS) consists in recovering a set of signals 

(called sources) from mixed versions of them, using a minimum amount of a priori 

information [1][2]. There are different hypotheses about the sources that can be used 

to build a BSS methodology in distinct practical contexts. A possibility that has 

received a great deal of attention in the last years is to assume that sources are sparse 

in some domain. A signal is considered sparse if most of its energy is concentrated on 

a small parcel of its coefficients [2]. Unlike what occurs in the context of traditional 

(e.g. ICA-based) source separation, when the signals are sparse, it is possible, at least 

in theory, to recover the sources even in situations with more sources than mixtures 

(the called underdetermined case) [2]. The use of sparseness is relevant in many 

applications, like audio and speech signal processing [2], and techniques based on this 

property are grouped under the aegis of the concept of Sparse Component Analysis 

(SCA). In this work, it is proposed the use of a powerful clustering method, called 

Weighted Fuzzy C-means [3], in the problem of mixing matrix estimation – one 

important step for BSS in the underdetermined case. 

2 Source Separation and Sparse Component Analysis 

The problem of BSS can be described as follows: given a set of measurements x(n), 

which are mixtures of a set of source signals s(n), the aim is to recover the sources in 

an unsupervised fashion.  If the mixing process is instantaneous, linear and time-

invariant it is possible to represent it with the aid of an M × P matrix A, where P is 

the number of sources and M is the number of mixtures. If P=M and A has full rank, 

the problem of BSS is equivalent to that of finding a separating matrix W that inverts 
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the mixing process. When the sources are mutually independent, this problem has 

been classically solved using Independent Component Analysis (ICA) [1][2]. 

 If the number of sources is higher than the number of mixtures – i.e. in an 

underdetermined case – source recovery using only independence is not possible. In 

these situations, other types of assumption need to be considered. Sparseness has been 

a most useful choice [2]. 

2.1 Sparse Component Analysis 

Sparseness implies, in essence, that a small proportion of signal samples, in some 

domain, convey a large proportion of the underlying information. The Cocktail Party 

Problem [2] provides an example: it is quite plausible that not all guests will talk 

simultaneously at all moments. 

 Interestingly, [4] showed that, if there is no overlap among the non-null source 

samples, it is possible to perfectly recover the sources, even when the mixing process 

is underdetermined. This work also showed that audio sources are good instances of 

sparse sources, being the time-frequency domain the most suitable one to highlight 

this property. Techniques that perform BSS based on sparseness belong to the class of 

Sparse Component Analysis (SCA) approaches [2]. Typically, SCA tools divide the 

BSS problem into three steps: (i) estimating the number of sources, (ii) estimating the 

mixing system and (iii) separating the sources. This paper will focus only in the 

second step, the estimation of the mixing matrix A. 

2.1.1 Estimation of the Mixing System 

Some of the first SCA approaches transformed the problem of estimating the elements 

of A into a clustering problem [2]. This strategy is interesting, as it allows the first 

and the second step to be directly dealt with: the number of clusters is indicative of 

number of sources and the centroid of each cluster brings information about a mixing 

direction [2]. 

 A basic premise in [4] is that there is no overlap among the source samples in 

the time-frequency domain. The Short Time Fourier Transform (STFT) is being used 

in this case. For the sake of clarity of presentation, the estimation approach will be 

presented for the case of two mixtures. If Xi(t,f) is the time-frequency representation 

of the i-th mixture of x(n), it is possible to define α(t, f): 
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Considering that in one sample or small window of data, represented by (tc, fc), only 

one source Sj(tc, fc) is ‘active’ and all the other sources are ‘null’, Si(tc, fc) = 0 ∀ i ≠ j, it 

is possible to rewrite (1) as: 
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(2) 

i.e., this parameter expresses the ratio between the coefficients of one of the columns 

of the mixing matrix. Consequently, the arctangent of this ratio will yield one angle θj, 

which is the direction associated with that specific column. Since it is not possible to 
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say, in each instant c, which of the sources is ‘active’, let us generate a set of θc 

values, defined as: 
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 Note that each θc is a candidate to be the direction of one of the columns of A. If 

(3) is applied to the whole set of c, there is a set of θ in which it is possible to extract 

important information about the mixture, such as the number of sources and the 

mixing system. A natural option to do so is to cluster the data. 

3 Clustering Methods 

In this work, three different clustering algorithms will be compared: k-means, fuzzy c-

means and weighted fuzzy c-means. Although the first two approaches have been used 

in works found in the literature [5], to the best of our knowledge, this is not the case 

for the weighted fuzzy c-means. Hence, in addition to the comparative analysis, the 

use of this method can be considered an original contribution. 

3.1 K-means 

The clustering method called k-means can be understood as a centroid search method 

that minimizes the following cost function [6]: 
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where N is the number of samples, K is the total number of clusters and Ck is the 

center of the k-th cluster; ukj = 1 if θj ∈ Ck, in other cases, ukj = 0. A pseudo-code of 

the k-means can be found in [6]. 

3.2 Fuzzy C-means 

The Fuzzy C-means (FCM) algorithm aims at clustering data through an iterative 

minimization process of the following cost function [7]: 

,),(
1 1

2


 


c

i

N

k

ik

m

ik vxuVUJ

 

(5) 

where U = [uik] is the membership matrix and uik, 1 ≤ i ≤ c and 1 ≤ k ≤ N, which 

denotes the degree of membership of the sample xk with respect to the i-th cluster; V = 

{vi} is the set of cluster prototypes and vi is the prototype of the i-th cluster; m (˃ 1.0) 

is a coefficient that defines the membership profile in individual clusters. An FCM 

pseudo-code is described as follows 
1 Initialize the membership matrix; 

2 t = 0; 

3 Do: 

  3.1 For i = 1 until c do: 

    3.1.1 Calculate the prototypes: 
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  end; 

  3.2 For i = 1 until c do: 

    3.2.1 For k = 1 until N do: 

      3.2.1.1 Update the membership matrix: 

;
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    end; 

  end; 

  3.3 t = t + 1; 

While ║U(t+1)-U(t)║ ≤ ε; 

Algorithm 1: Fuzzy C-means pseudo-code 

3.3 Weighted Fuzzy C-means 

Weighted Fuzzy C-means (WFCM) algorithm performs data clustering by minimizing 

the following cost function [3]: 
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The function presented in (8) is a modification of (5) that allows a weight wk to be 

attributed to each data sample xk. 

 The WFCM pseudo-code is analogous to that presented in section 3.2, except 

for the equation that computes the prototypes - i.e. equation (6) must be replaced by: 
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3.3.1 Strategy to find the weights of WFCM 

Two different strategies were conceived to find the weights wk in the WFCM. The 

first used the information about the density of neighborhood around each sample, 

given a distance threshold.  This approach showed good results only when the number 

of sources was small. This fact justified a second and more complex approach, which 

is to use Gaussian functions for each cluster center. The functions are positioned in a 

way that cluster centers are aligned with their peaks. The weight of a sample is given 

by the sum of the values of the functions that refer that sample. All the samples’ 

weights are normalized so that their values do not exceed one. 

 Another matter is how to choose the dispersion of the Gaussian functions. In the 

first steps of the algorithm, they are relatively large, but are reduced along the 

iterations, giving more importance to the samples closer to the center. 
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4 Simulations and Results 

In order to analyze the performance of the WFCM in the problem of mixing matrix 

estimation, the algorithm was compared to the k-means and to a variant with α = 1, to 

the fuzzy c-means with m = 1 and 2 and to the DEMIXN [8], a classical SCA tool.  

 Using P sources randomly chosen among a set of 200 five-second duration 

excerpts of Polish voices, all of them sampled at 4 kHz
2
, two mixtures (M = 2) were 

generated at each time, with P varying from 2 to 12. All possible θc’s were calculated 

according to (3), using an average of 100 samples, except for the DEMIXN, which 

used 10 samples in most cases. The quality of the results is measured using the 

Angular Mean Error (AME) between the estimates and the true directions of A, as 

described in [8]. For each case, 100 simulations were run. 

   

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1. AME of the estimation of the mixing matrix using k-means with α = 1 and 2, 

FCM with m = 1 and 2, WFCM and to the DEMIXN [8]. On the left, the mean 100 

runs for all methods from 2 to 12 sources: (a) with the same mixing matrix, with its 

directions equally spaced, in all runs; and (c) with the mixing matrix plus a Gaussian 

disturbance. On the right, the dispersion of all runs for 3 methods: k-means with α = 1 

(◄), WFCM (○) and DEMIXN (□) with a zoomed window for the first cases: (b) 

with the same mixing matrix, and (d) with mixing matrix plus disturbance.  

 

 In the first case, A is the same for all simulations, and was generated in order to 

have all the dictions of its columns equally spaced. Fig. 1.a shows the mean of the 

AME. Between 2 and 6 sources, both WFCM and DEMIXN show similar results. 

From 7 sources on, k-means with α = 1 is the best in most cases. It is important to 
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notice that the number of samples used for DEMIXN had to be changed, for 7 and 11 

sources, to 100 and 20, respectively. To allow a better understanding of the results, 

Fig. 1.b was plotted showing the distribution of all simulations for 3 methods: k-

means with α = 1 (◄), WFCM (○) and DEMIXN (□).  DEMIXN converges to the 

same result in all cases, and k-means has a small dispersion in the results. This is not 

the case for the WFCM, that has excellent results until 5 sources (see zoom detail in 

the figure), but a larger dispersion from 8 sources. 

 Considering this results, a second scenario was defined. The mixing matrix is 

identically generated, but now, in each run, a Gaussian random perturbation is 

imposed to the directions of the columns, being the rest kept unchanged. Fig. 1.c and 

Fig. 1.d show the same results now for this new model of A. Now, it is noticeable that 

DEMIXN was not robust, having the worst performance in many situations. On the 

other hand, WFCM shows results significantly more robust until 9 sources. 

5 Conclusions and Perspectives 

This work presented a comparative analysis of clustering methods for SCA and 

proposed the use of the Weighted Fuzzy C-means to estimate the mixing matrix in 

underdetermined BSS. The results showed that the WFCM has a performance 

comparable to that of the other methods for a mixing matrix with uniform column 

distribution and presents better results when the column distribution has a more 

stochastic character.  

 As an immediate perspective for future works, the authors intend to derive a 

method based on the WFCM to estimate the mixing matrix and the number of sources 

present in the mixture. The comparative analysis will also be extended to include a 

broader range of SCA techniques. 
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