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Abstract. We propose in this paper a new kernel for time series on
structured data in the dynamic time warping family. We demonstrate
using the theory of infinitely divisible kernels that this kernel is positive
definite, that it is a radial basis kernel and that it reduces to a product
kernel when comparing two sequences of the same length. Finally we
compare this kernel with the global alignment kernel in a classification
task using support vector machines.

1 Introduction

Kernel methods have proven extremely useful for dealing with a wide range of
problems, in particular they have been used to extract non linear features using
extensions of linear methods and to treat structured data as vectors in a Hilbert
space. In this publication we deal with the case of data organized as sequences,
whose elements lie in an arbitrary space X , which can be a space of structured
data. We only assume X is endowed with a positive definite (abbreviated p.d.)
kernel k. We denote by X ∗ the space of finite sequences with elements in X ,
such that X ∗ = ∪∞i=1 X

i. The goal is now to design a kernel k∗ on X ∗ with
suitable properties.

Let x = (x1, . . . , xl) and x′ = (x′1, . . . , x
′
m) two elements of X ∗. In the general

case, these two elements may not have the same length, and thus one cannot use
traditional vector-based approaches such as a Gaussian kernel in an Euclidian
space to compare these sequences. One solution is to define alignments between
sequences. An alignment associates elements from one sequence to elements in
another sequence such that the order of elements is preserved. Alignments can
either introduce gaps or repetitions.

Attempts to deal with this problem resulted in the well-known dynamic time
warping kernel [1], which seeks the best alignment between two sequences. Al-
though this kernel has been extensively used by practitioners it has been demon-
strated recently [2] that it is in fact not p.d. Since then some researchers have
proposed alternatives, such as for example the global alignment (abbreviated
g.a.) kernel [3]. In this work we shall consider a particular kind of alignments
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with repetitions, these in which only the shortest sequence can have repeated el-
ements, hence the name “one-sided”. In this case we will not use the classical
formalism of alignments, but rather refer to what we call “dilatation operators”.
These will be precisely defined in Section 3.2, but we can already define them
informally: a dilatation operator is a function that maps a finite sequence to a
longer finite sequence by repeating one or more of its elements while keeping the
order. We denote by ξ′l→m the set of dilatation operators that map sequences of
length l to sequences of length m. One can easily see that the cardinal of this
set can be defined with binomial coefficients: |ξ′l→m| =

(
m−1
l−1
)
.

2 The one-sided mean alignment kernel

2.1 Practical case: real values with Gaussian kernel

We start by giving an example of the one-sided mean kernel in the case where
elements of sequences are real values: X = R. This is useful to get a sense of
how this kernel is represented in most practical cases, before we delve into the
more abstract setting of infinitely divisible kernels. Let x and x′ two elements of
X ∗. We shall refer to the shortest and longest elements of (x,x′) as xl and xm

respectively, with l ≤ m denoting the respective lengths of the sequences. Note
that xl and xm are both elements of X ∗ whereas xl and xm refer respectively
to the lth and mth components of x. In the real case the one-sided kernel k∗ is
defined as:

k∗(x,x′) = exp

− 1

|ξ′l→m|
∑

ε∈ξ′l→m

1

m
‖ε(xl)− xm ‖2

 (1)

First note that for two sequences of the same length m the kernel evaluation
reduces to the classic Gaussian kernel: k∗(x,x′) = exp(− 1

m‖x−x′ ‖2). Note
also that as the shorter sequence plays a special role, this equation is not sym-
metric w.r.t. xl and xm; however it is indeed symmetric w.r.t. x and x′. This
example illustrates interesting properties of this kernel: as it is defined using
means of distances, comparing sequences of diverse lengths will always yield val-
ues that are in the same range; and this has important consequences in terms of
consistency when studying sub-sampling of continuous time series.

2.2 Abstract case: infinitely divisible kernels

Definition 1 Let K be a p.d. kernel on X ×X . The kernel K is called infinitely
divisible if for each positive integer n there exists a p.d. kernel Kn such that
K = Kn

n .

Next, for any kernel k on X ×X , and any integer m ≥ 1 we denote by km :
Xm×Xm → R the product kernel defined as km(x,x′) = k(x1, x

′
1) · . . . ·

k(xm, x
′
m). We can now state a more general definition of the one-sided mean

kernel.
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Definition 2 Let k be a kernel on X ×X . The one-sided mean alignment ker-
nel k∗ is a kernel on X ∗×X ∗ defined as the geometric mean of all one-sided
alignment scores:

k∗(x,x′) =

 ∏
ε∈ξ′l→m

km(ε(xl),xm)
1
m

 1
|ξ′
l→m|

(2)

In the literature k is sometimes called the base kernel with respect to k∗. As
our main contribution we state the following theorem:

Theorem 1 The one-sided mean kernel k∗ verifies the following properties:

1. If k is p.d. and infinitely divisible, then k∗ is p.d.,

2. When comparing two sequences x and x′ of the same length m, k∗ reduces
to the product kernel: k∗(x,x′) = km(x,x′)

1
m .

3. If k is a radial basis kernel 1, then k∗ is a radial basis kernel.

Of course, the Gaussian kernel k(x, y) = exp(−(x−y)2) is itself infinitely divisible
[4], and it suffices to express the product as the exponentiation of distances to
be lead to Equation 1.

3 Demonstration of the main theorem

3.1 Principle

In order to prove that the one-sided mean kernel is p.d. we will prove that its
evaluation over any finite dataset (x1, . . . ,xN ) of any size N yields a p.d. matrix.
We denote by n the length of longest sequence in the dataset. Informally, using
the theory of infinitely divisible kernels we will “divide” the values of kernel
evaluations k∗(xi,xj) into sufficiently small parts that will be rearranged to
expose the fact that the Gram matrix can be expressed as a Schür product of
many p.d. matrices. Indeed, one can see that the kernel is already defined as a
product of other kernels, however this product is indexed by a set ξ′l→m which
depends on the particular pair of samples (xl,xm) being considered. Thus our
task shall be to rewrite this product such that it is indexed by ξ1→n, a set
independent of the pair of samples considered.

3.2 Formal definition of dilatation operators

We shall define the set of dilatation operators in a recursive manner. First for
any positive integer l indicating the length of a sequence, we denote by εli the
operator that dilates a sequence of length l by repeating once its ith element:

εli :
X l → X l+1

a1a2 . . . al 7→ a1a2 . . . aiai . . . al

1In the sense of Haussler [4] a (generalized) radial basis kernel is a kernel with values in
[0, 1] and equal to 1 only on the diagonal {(x, x), x ∈ X}.
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For the sake of our demonstration we will have to extend slightly this definition
by enlarging the support of εli to all of X ∗:

ε∗li (x) =

{
εli(x) if |x | = l
x if |x | 6= l

(3)

For the sake of clarity we shall from now on omit the star exponent and denote
by εli the extended operator. Next we denote by ξl→l+1 the set of all dilatation
operators that map a sequence of length l to a sequence of length l + 1. Thus
ξl→l+1 = {εli, i ∈ [[1, l]]}.

Let l < m two integers. In order to define the set of dilatation operators that
map a sequence of length l to a sequence of length m, we state that one such
operator first dilates a sequence of length l to a sequence of length l + 1, then
to a sequence l + 2, etc. until a sequence of length m is reached. Recursively it
can be defined as:

ξl→m = {ε′ ◦ ε, ε ∈ ξl→m−1 ∧ ε′ ∈ ξm−1→m} (4)

Finally for consistency, we have ξl→l = {IdX∗}.

Combinatorial considerations For the sake of the demonstration we consider
for example ε31 ◦ ε22 and ε33 ◦ ε21 to be two different elements of ξ2→4 although they
are identical in the mathematical sense since they both represent the same input-
output relation. Thus the cardinal of ξl→m is |ξl→m| = (m − 1)(m − 2) . . . l =
(m−1)!
(l−1)! . We denote by ξ′l→m the set of dilatation operators without repetition

such that |ξ′l→m| =
(
m−1
l−1
)

and such that for each element in ξ′l→m there are
exactly (m− l)! identical elements in ξl→m.

3.3 Developments

We first start by replacing xm by ε(xm) which does not change the values by
virtue of Equation 3; and then by replacing ξ′l→m by ξl→m which does not change
the value of the geometric mean as discussed in Section 3.2, so that we obtain

k∗(x,x′) =
∏
ε∈ξl→m km(ε(xl), ε(xm))

1
m·|ξl→m| .

Next, we change the index set of the product from ξl→m to ξ1→m. As
both elements xl and xm have length strictly superior to l − 1 this results
according to Equation 3 to elements of ξl→m being repeated exactly (l − 1)!
times, which we account for by changing the exponent and which leads to

k∗(x,x′) =
∏
ε∈ξ1→m km(ε(xl), ε(xm))

1
m·(l−1)!·|ξl→m| . Finally, as |ξl→m| = (m−1)!

(l−1)! ,

we have:
k∗(x,x′) =

∏
ε∈ξ1→m

km(ε(xl), ε(xm))
1
m! (5)

The next step is to prove a certain identity by induction. Let p ≥ m > l.
Using Equation 4 we can decompose any element of ξ1→p+1 such that:∏
ε∈ξ1→p+1

kp+1(ε(xl), ε(xm)) =
∏

ε′∈ξ1→p

∏
ε′′∈ξp→p+1

kp+1(ε′′(ε′(xl)), ε
′′(ε′(xm))) (6)

310

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.



Then by breaking down the definition of kp+1 and rearranging the terms in
the product one can easily see that for any xp, x

′
p in X p:∏

ε′′∈ξp→p+1

kp+1(ε′′(xp), ε
′′(x′p)) = kp(xp,x

′
p)
p+1 (7)

By applying Equation 7 to xp = ε′(xl) and x′p = ε′(xm), combining with Equa-

tion 6 and elevating to the power 1
(p+1)! we obtain:∏

ε∈ξ1→p+1

kp+1(ε(xl), ε(xm))
1

(p+1)! =
∏

ε∈ξ1→p

kp(ε(xl), ε(xm))
1
p!

By induction from p = m until p = n, and by using Equation 5 we obtain that
k∗(x,x′) =

∏
ε∈ξ1→n kn(ε(xl), ε(xm))

1
n! . As kn is symmetric we are finally lead

to another expression for the one-sided mean kernel:

k∗(x,x′) =
∏

ε∈ξ1→n

kn(ε(x), ε(x′))
1
n! (8)

Recall that n is the length of the longest sequence in the dataset, thus Equation
8 is valid for any pair of samples (x,x′) in the dataset.

3.4 Conclusion of the demonstration

For any ε ∈ ξ1→n, denote byKε,N theN×N Gram matrix obtained by evaluation

of the kernel k
1
n!
n over the samples ε(x1), . . . , ε(xN ). As demonstrated in [4], a

product of p.d. infinitely divisible kernels is p.d. and infinitely divisible; thus

kn is infinitely divisible, which proves that k
1
n!
n is a p.d. kernel. Thus for any

ε ∈ ξ1→n, Kε,N is a p.d. matrix.
Now let us define KN =

⊗
ε∈ξ1→n Kε,N the Schür product (entrywise prod-

uct) of the (n− 1)! aforementioned matrices. According to Equation 8, we have
that KN =

(
k∗(xi,xj)

)
i,j

. The Schür product of p.d. matrices is a p.d. matrix

[4], thus KN is p.d., which concludes the demonstration of the first property.
The second and third properties are easily deduced from the fact that between

two sequences of the same length there exists only one one-sided alignment.

4 Experiments

In this section we carry experiments for comparing the one-sided mean kernel
with the g.a. kernel on the Japanese vowels dataset [5]. The database contains
utterances by nine male speakers of two Japanese vowels ’a’ and ’e’ successively.
Each utterance is described as a time series of length varying from 7 to 29
observations, each observation consists in 12 LPC cepstrum coefficients. The
task is to guess which of the nine speakers pronounces a new utterance of ’a’ or
’e’. We use the data divided in 270 samples for training and 370 for testing. We
use a one-against-one classification scheme as implemented in the Scikit-learn
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One-sided mean kernel
dmed \C 0.1 1 10

0.5 0.946 0.978 0.986
1.0 0.959 0.978 0.981
2.0 0.962 0.981 0.978

Global alignment kernel
dmed \C 0.1 1 10

0.5 0.978 0.957 0.954
1.0 0.978 0.970 0.970
2.0 0.983 0.981 0.981

Fig. 1: Correct detection ratios

library. As the base kernel we use a Gaussian kernel that we normalize with
a distance d in the set {0.5 · dmed, dmed, 2.0 · dmed} where dmed is defined as
dmed = mediani,j{meant,t′{‖xit− x

j
t′‖2}} with i and j being indexes for samples

and t and t′ indexes for time. Concerning the g.a. kernel, as advised in [3] we
take the logarithm of the values. We also experiment with different values for
the regularization parameter C for the training of the SVM. As we can see in
Figure 1 the one-sided performs favorably compared to the g.a. kernel.

5 Conclusion

The kernel we propose is in the same family as the g.a. kernel; it can just as well
handle time series whose elements are structured data because it is defined from
a base kernel k. With only mild requirements on k we have demonstrated that k∗

is both p.d. and a radial basis kernel. Because it is defined using means instead
of sums the one-sided mean kernel does not suffer from diagonal dominance
issues, and thus can readily be used in practice; whereas it is common to take
the logarithm of the values of the g.a. kernel which breaks its p.d. property.
In addition the one-sided mean kernel seems to compare favorably in terms of
performance on real-world datasets. Of course there are many applications where
the fact that only the shorter sequence can have repeated states is an issue, for
example one would not want to use the one-sided kernel for applications such as
protein sequence analysis. However, when dealing with for example the sampling
of continuous processes, one can obtain meaningful results.
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