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Abstract. Learning vector quantization applying non-standard metrics became
quite popular for classification performance improvement compared to standard ap-
proaches using the Euclidean distance. Kernel metrics and quadratic forms belong
to the most promising approaches. In this paper we consider Minkowski distances
(lp-norms). In particular, l1-norms are known to be robust against noise in data,
such that, if this structural knowledge is available in advance about the data, this
norm should be utilized. However, application in gradient based learning algo-
rithms based on distance evaluations need to calculate the respective derivatives.
Because lp-distance formulas contain the absolute approximations thereof are re-
quired. We consider in this paper several approaches for smooth consistent approx-
imations for numerical evaluations and demonstrate the applicability for exemplary
real world applications.

1 Introduction

Utilization of non-standard (non-Euclidean) metrics is one of the key ideas in learning
vector quantization to improve the performance of classification learning. Whereas
in traditional vector quantization the Euclidean distance is standard, kernel methods
like support vector machines make use of kernel similarities [20]. Other examples
are weighted Euclidean distances [8], general bilinear forms [22], correlations [23],
functional norms and Sobolev distances [14, 18], divergences [4, 24] or kernel distances
[20, 25], to name just a few.
Recently, lp-norms with p 6= 2 became popular as alternative dissimilarities in machine
learning approaches [1, 6, 16]. Depending on the parameter p, lp-norms show different
behavior, which makes them interesting for many applications [2, 17]. For example, the
larger the p-value, the greater is the influence of noise for the receptive p-norm. Thus,
for noisy data l1-norms are more appropriate than the Euclidean norm [7].
Yet, differentiation of general lp-norms and their induced dissimilarity measures suf-
fers from the inconsistency for the origin x = 0 due to the inherent absolute value
calculation. Therefore, the application of lp-norms in gradient based machine learning
approaches requires smooth consistent approximations of the derivatives.
The aim of the paper is twofold: First we consider several smooth approximations of
dissimilarities induced by lp-norms and semi-norms and provide consistent approxi-
mations of their derivatives. Thus, they can immediately be applied in gradient based
learning vector quantization (GLVQ,[19]). Second, we show in two real world exam-
ples the successful application of l1-norms for LVQ.
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2 lp-Norms, derivatives and approximations thereof
2.1 Basic notations and properties

In this section we provide useful approximations of the lp-norms such that derivatives
become available also at the origin x = 0. For this purpose, we consider the Minkowski
lp-norm ‖x‖p = p

√∑n
i=1 |xi|

p for 1 ≤ p < ∞ with the corresponding Minkowski
distance d∗p (v,w) = ‖v −w‖p. The frequently used quantity

dp (v,w) =
(
‖v −w‖p

)p
(1)

is only a dissimilarity measure violating the triangle-inequality and the linearity of dis-
tances. However, it is frequently considered in machine learning.
The choice of the p-value causes different behavior of the dissimilarities. The larger
p the more important great variations become in a single dimension. For p < 1 small
variations, are emphasized and the unit ’circle’ becomes concave, see Fig.1.

Figure 1: Unit circles for several Minkowski-p-norms ‖x‖p: from left to right p = 0.5, p = 1
(Manhatten), p = 2 (Euclidean), p = 10.

For 0 < p < 1, d∗p is only a quasi-norm [15] fulfilling p-triangle inequality ‖v‖pp +

‖w‖pp ≤ ‖v + w‖pp. However, now (1) is a translation-invariant distance [11].
The weighted dissimilarities

dλp (v,w) =
n∑
i=1

λi |vi − wi|p and dΩ
p (v,w) =

m∑
i=1

(|[Ω (v −w)]i|)
p (2)

with λi ≥ 0 subject to
∑n
i=1 λi = 1 and Ω ∈ Rm×n, respectively, were proposed

for p = 2 in relevance learning for learning vector quantization [8, 22]. Thereby, we
denoted [x]i = xi.

2.2 Formal derivatives for dp (v,w)

Utilization of those dissimilarities with in gradient based machine learning methods
like self-organizing maps or GLVQ requires the calculation of the derivatives ∂dp(v,w)

∂w ,
where v ∈ Rn is a data vector w ∈ Rn is a prototype. Supposing 0 < p < ∞, the
formal derivative is

∂dp (v,w)

∂wk
= −p · |zk|p−1 · ∂ |zk|

∂wk
(3)

with z = v −w. The gradient (3) can be written in vectorized form as

∂dp (v,w)

∂w
= −p · |z|?(p−1) ◦ ∂ |z|

∂z
(4)
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where x ◦ y = (x1 · y1, . . . , xn · yn)
> denotes the Hadamard product. Further, x?k

denotes the componentwise power of x =
(
xk1 , . . . , x

k
n

)>
and ∂|z|

∂w = −∂|z|∂z holds.
Analogously, we find

∂dλp (v,w)

∂w
= −p·λ◦|z|?(p−1)◦∂ |z|

∂z
and

∂dΩ
p (v,w)

∂w
= −p·Ω>

(
|s|?(p−1) ◦ ∂ (|s|)

∂s

)
(5)

with s = Ωz ∈ Rm. We observe that we need the derivative of the absolute value
function, which has to be approximated for the origin.
For p = ∞ the above dissimilarity formulas (2) involve the maximum function
max (x) = maxi (xi). Thus we get

∂dλ∞ (v,w)

∂w
= −∂max (λ ◦ |z|)

∂z
and

∂dΩ
∞ (v,w)

∂w
= −Ω>

∂max (|s|)
∂s

(6)

analogously. Here, the derivative of the maximum function is required. The derivatives
for the relevance weights λi and the Ωk,j in case of the weighted dissimilarities (2) are
obtained analogously for relevance or matrix learning and can be found in [13].

2.3 Approximations for the functions max (x) and |x|
In the following we consider smooth approximation for the function max (x) and |x|
as well as their derivatives.
At least two variants for the the maximum function easily are well-known: The first is
the α-softmax function

Sα (x) =

∑n
i=1 xie

αxi∑n
i=1 e

αxi
(7)

with α > 0, frequently applied in optimization and neural computation [3, 9]. A value
α < 0 in (7) yields a smooth minimum approximation whereas for α → 0 a soft
approximation of the mean is obtained. The second frequently applied variant is the
α-quasimax function

Qα (x) =
1

α
log

(
n∑
i=1

eαxi

)
(8)

proposed by J.D. COOK [5]. This α-quasimax can be seen as a kind of a generalized
functional mean or quasi-arithmetic mean discussed in [12]. One can easily verify that
Qα (x) ≤ max (x) + log(n)

α is always valid .
A smooth approximation of the absolute value function was proposed in [21]:

|x|α = (x)
+
α + (−x)

+
α (9)

with (y)
+
α = max (y0) for y0 = (y, 0)

>. CHENG&MANGASARIAN proposed a convex
α-approximation (y)

+
α = y + 1

α log (1 + e−αy). One verifies that this is equivalent to

(y)
+
α = y +Qα (y0) (10)
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using the α-quasimax function Qα from (8) [13]. Inserting these formulas in (9), we
obtain an approximation

|x|Qα =
1

α
log
(
2 + e−αx + eαx

)
(11)

referred as α-quasi-absolute. Hence, |x|Qα is consistent with Qα (x) with the upper
bound ||x| − |x|Qα | ≤ 2 log(2)

α [17].
Alternatively, we can replace in (10) the α-quasimax function Qα by the α-softmax
function Sα which leads to

|x|Sα =
x · (eαx − e−αx)

2 + eαx + e−αx
(12)

denoted as α-soft-absolute.

2.3.1 Approximation of the derivatives

If the above introduced smooth approximations are used in gradient based numerical
methods, neural networks or other methods in machine learning the derivatives have to
be known. We provide the respective formulas in the following: In particular, we obtain

∂|x|Qα
∂x

= tanh
(α

2
x
)

and
∂|x|Sα
∂x

= tanh
(α

2
x
)

+
αx

2
(
cosh

(
α
2 x
))2

for the α-quasi-absolute |x|Qα and for the α-soft-absolute |x|Sα, respectively. Although
|x|Qα and |x|Sα look quite different, their derivatives differ only slightly by the additive
deviation term

∆SQ (αx) =
αx

2
(
cosh

(
αx
2

))2 . (13)

For the α-softmax function Sα (x) from (7), the gradient can be expressed in terms of
Sα (x) itself

∂Sα (x)

∂xk
=

eαxk∑n
i=1 e

αxi
[1 + α (xk − Sα (x))] (14)

whereas for the α-quasimax function Qα (x) from (8) we simply obtain

∂Qα (x)

∂xk
=

eαxk∑n
i=1 e

(αxi)
. (15)

Again, we observe only a slight variation ∂Sα(x)
∂xk

= ∂Qα(x)
∂xk

· ∇SQ with the multiplica-
tive corrector∇SQ = [1 + α (xk − Sα (x))].

3 Applications
We applied the dissimilarity dΩ

p (v,w) from (2) in the matrix variant of GLVQ
(GMLVQ,[22]) for two different datasets. The first one is a set of 4120 tiling microar-
ray (data dimension n = 24) of corresponding to exonic and intronic/intragenic regions
in chromosome 3 of C.elegans. Tiling micro array data usually contain a lot of noise
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such that learning of these data is difficult. A detailed description of the data can be
found in [1]. In the investigation described in this publication, the standard LVQ1 algo-
rithm was applied for prototype learning, which is based on the (weighted) Euclidean
norm dλ2 (v,w). However, inherent prototype selection as well as relevance parameters
λi optimization were done using the l1-distance dλ1 (v,w) to deal with the noisy data.
Thus, there is an inconsistency in the approach. The best performance was obtained
for 6 prototypes per class: 89.3%. In our application we used the same number of
prototypes (6 per class). We applied GMLVQ with dΩ

p (v,w) for p = 1 and p = 2 con-
sistently used for prototype learning and matrix adaptation in a 4-fold cross-validation.
The achieved test accuracies are 90.8% and 88.8%, respectively. Thus consistent l1-
learning improves the result. Further, we did not recognized any significant difference
regarding the used approximation (α-quasi-absolute or α-soft-absolute, α = 20).
In a second application we analyzed spectral data obtained from a gas chromatogra-
phy–mass spectrometry (GC-MS) analysis of volatile organic components in exhaled
breath for detection of inflammatory processes in the lung. The GC-MS spectra were
delivered as 334-dimensional spectra covering a measurement time interval of 20min.
The dataset contains 48 spectra partitioned into two classes. A detailed data description
can be found in [10]. We used only one prototype per class in GMLVQ and conducted
a 8-fold cross-validation. Again we applied dΩ

p (v,w) for p = 1 and p = 2 consistently
for prototype learning and matrix adaptation. We achieved the test accuracies 85.4%
and 81.3%, respectively. The better l1-result clearly emphasizes this choice of dissim-
ilarity. This is in agreement with the knowledge about the noise influence for GC-MS
spectra regarding the peak height [26] and the above mentioned robust behavior of lp-
distances for smaller p-values also reported in [7].

4 Conclusion
In this paper we consider lp-distances and discuss smooth approximation thereof, which
are required when used in gradient based learning methods based on dissimilarity eval-
uations between data and reference vectors. Generally, lp-distances contain the absolute
value function, which causes difficulties for the (numerical) calculation of the deriva-
tives. We provide smooth approximations and explain the respective derivatives. We
compare the utilization of the weighted l1-distance with the weighted Euclidean dis-
tance for two applications. The first one is also in comparison to an earlier but inconsis-
tent approach. We demonstrate that l1-distances can be successfully applied using the
described approximation techniques.
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