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Abstract. In this paper, we propose the utilization of structural infor-
mation of spectral data during the preprocessing to extend the ability of
subsequent analysis methods. Specifically, we expect a dataset of measured
spectra containing mixtures of only a few spectral components. Using the
concentration ratios for a small subset of mixtures and the chemical struc-
tural knowledge, theoretical spectral components are generated. Then a
set, which combines measured and theoretical spectra, is analyzed using a
self-organizing map to predict the unknown mixture ratios of the remain-
ing subset by an associative learning. At this time, the initial study on
simulated data reached very good results.

1 Introduction

The prediction of concentration of mixture components is an important task in
chemical data analysis. In this paper we propose an approach based on Koho-
nen’s Self-Organizing Map (SOM,[1]) and an utilization of structural chemical
knowledge, if the mixture information is available for a few data of the whole
data set.
The SOM is one of the most popular data mining and visualization methods for
vectorial data. It provides a non-linear mapping of the possibly high-dimensional
data onto a low-dimensional, frequently two-dimensional, grid. Under certain
conditions this mapping preserves the topological properties of the data [2].
Chemical spectral data are known to be high-dimensional in general and, there-
fore, are predestined for processing using SOMs in order to visualize them or to
detect clusters. To analyze the dependence of the spectral structure of data on
specific chemical parameters, such as the pH-values or concentrations, a fused
mapping of the spectral data together with further information is frequently
requested. For this need, Melssen proposed the XY-fused SOM [3]. In this
approach, two SOMs, one for spectral data and one for chemical parameters, are
combined bi-directionally via a merged winner determination. Yet, this struc-
ture is very complex and fails if only a small amount of data is available for
learning, as it is frequently the case in chemical data analysis.
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Here, the factor analysis, which is used as standard method for spectral decom-
position, can be mentioned. Nevertheless, the non-linearity of SOMs seems to
have much greater potential especially for further research on spectral unmixing
problems as the factor analysis.
Thus, in this paper we propose the following strategy: First, in a preprocessing
step, we use the available mixture information for a small subset of the spec-
tral data to estimate theoretical pure component spectra, which can serve as
additional data vectors with the identity matrix as known mixture information.
For this purpose, chemical structure information is explicitly taken into account.
Thereafter, we apply associative learning in self-organizing maps to estimate the
unknown mixture ratios for all spectra of the data set. In the last section of this
paper we present the application of this strategy to a simulated data set.

2 Preprocessing of spectra using chemical structure infor-
mation

2.1 Spectral pattern and structural information in composite spectra

We assume n spectra di obtained from some measurements with NB bands
collected in the data matrix D = {d1, · · · ,dn} ∈ Rn×NB . In our data to be
analyzed, these spectra are obtained by extended X-RAY absorption fine struc-
ture spectroscopy (EXAFS,[4]) as absorption spectra. These measured spectral
composites di consist of sparse mixtures of m theoretical components, where
m << n. These m pure spectra, which are estimated as described later, are
collected in the matrix R ∈ Rm×NB with R = {r1, · · · , rm} and rj ∈ RNB .
Further we denote by C ∈ Rn×m with C = {c1, · · · , cn} and ci ∈ Rm the un-
known component concentration ratios of the component spectra R within the
composites D.
The structural information of the spectral signal can be described by the
Lambert-Beer law [5]. In the following, this definition is explained for absorption
spectroscopic methods, but can be adapted simply to many other spectroscopic
methods, such as fluorescence spectroscopy.
The spectral signal of an absorbing substance is called extinction E in absorp-
tion spectroscopy and depends proportionally on the thickness of the sample b,
the concentration c and on an extinction coefficient α by

E(λk) = b · c · α(λk)

(
[cm]

[
mol

l

] [
l

mol · cm

])
. (1)

The unit of the extinction coefficient α results from the units for b and c. We sup-
pose the thickness of the sample b is standardized to 1cm for each measurement,
so we can reduce the equation (1) to

E(λk) = c · α(λk)

([
mol

l

] [
l

mol

])
If we further assume a high concentration of 1mol

l for the substance, we see that
the extinction coefficient α(λk) is equal to E(λk) and therefor has the same data
characteristics as E(λk).
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Furthermore, mixture samples contain more than one absorbing substance,
which here are assumed having no interactions between them. Then, the absorp-
tion of a composite sample Ei, with i is the index of measurements in 1 < i < n,
is the sum of the singular extinctions

Ei(λk) = E1(λk) + E2(λk) + · · ·+ Em(λk)

resulting in the linear Lambert-Beer law for the m components.

Ei(λk) =
m∑
j=1

cij · αj(λk) (2)

Furthermore, these equations show, that the extinction E and their extinction
coefficient α relies on λk , which is the wavelength of the kth band with k =
{1, · · · , NB}. Depending on the dimension of λk, which can characterize either
only one or all NB spectral bands, we get either a single extinction value E or
an extinction vector E. This also applies to the extinction coefficients α.
For our data set, the extinction vector E of a sample i is the measured spectrum
di. Further, the m pure components can be identified with their extinction
coefficients αj such that rj = αj is valid. Thus we obtain in (2)

di(λk) =
m∑
j=1

cij · rj(λk) (3)

D = CR . (4)

We observe that under certain conditions the measured spectra di can be deter-
mined additively by the spectra of the pure components rj and their concentra-
tion values cij within the composites. For a set of measured spectra D equation
(3) holds in the same way, as shown in (4). Further we only consider convex
data structures, i.e.

∑m
j=1 cij = 1. In particular, it is assumed that the number

of all contained components is known in advance.
Unfortunately, the concentration matrix C is generally not known for the mea-
sured data. Hence, we cannot calculate the matrix R. However, the deduced
structural relation (4) can be used as chemical structure information for struc-
tured preprocessing if a few concentrations are available.

2.2 Using structural information for structured preprocessing

In our problem we assume a spectral data subset DS ∈ Rm×NB , for which the
concentrations CS ∈ Rm×m are known. Thus, if we have this additional data at
least for as many spectra as components rj with 1 < j < m underlying the data,
we can compute the pure component spectra R using the structural information
in (4). For this purpose, we apply an iterative Jacobi scheme [6], such that for
each iteration step t+ 1 we obtain

Rt+1 = O−1
[
DS − LRt

]
(t = 1, 2, · · · )
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where the following notation is used.

CS =


c11 c12 · · · c1m
c21 c22 · · · c2m
...

...
. . .

...
cm1 cm2 · · · cmm

 = L + O with

L =


0 c12 · · · c1m
c21 0 · · · c2m
...

...
. . .

...
cm1 cm2 · · · 0

 , O =


c11 0 · · · 0
0 c22 · · · 0
...

...
. . .

...
0 0 · · · cmm


The iteration, starting with some set values R0, is performed until ‖Rt+1−Rt‖ <
ε, where ε > 0 is a chosen tolerance, is reached. Here, ‖ · ‖ denotes the spectral
norm. Convergence is guaranteed if either

max
i

m∑
j=1,j 6=i

∣∣∣∣cijcii
∣∣∣∣ < 1 or max

j

m∑
i=1,i6=j

∣∣∣∣cijcii
∣∣∣∣ < 1

holds [6]. As a result, we obtain the estimates R of the pure component spectra.
The concentration matrix CR with CR = {e1, · · · , em} and ej ∈ Rm is simply
the unity matrix of dimension m consisting of the respective unity vectors ej . In
this way, we are able to generate additional spectra with known concentrations
based on the chemical structure information (4).

3 Utilization of the extended data set to SOM-association-
learning

After the structured preprocessing, we have, on the one hand, the originally given
data, consisting of D with the subset DS , for which the concentrations CS are
available. W.l.o.g. we suppose these spectra to be d1 . . .dm with concentration
vectors c1 . . . cm. On the other hand we generated the pure component spectra
R with trivial concentrations CR. Thus we have the following dataset:

V =



d1,1 · · · d1,m r1,1 · · · r1,m
...

. . .
...

...
. . .

...
dNB ,1 · · · dNB ,m rNB ,1 · · · rNB ,m

c1,1 · · · c1,m e1,1 · · · e1,m
...

. . .
...

...
. . .

...
cm,1 · · · cm,m em,1 · · · em,m


, Ṽ =



d1,m+1 · · · d1,n
...

. . .
...

dNB ,m+1 · · · dNB ,n

c1,m+1 · · · c1,n
...

. . .
...

cm,m+1 · · · cm,n


Hence, the fused dataset V = {v1, · · · ,vm+m} contains both informations, the
spectra and their known concentrations merged into single vectors vl ∈ Rp with
p = NB +m and 1 < l < m+m. The set Ṽ collects the remaining n−m spectra
together with the unknown concentrations cm+1 . . . cn.
Both datasets are used for associative learning in SOMs [1]. In our application,
the SOM grid A is a square lattice of edge length N such that the coordinate
vectors are k ∈ N2. The weight vectors or prototypes W = {wk} assigned to
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A, have the same dimension p as defined for the data vector of V.
Usual SOM training takes place as applying the winner determination

s(v) = arg min
k∈A
‖v −wk‖

and subsequent prototype adaptation according to

∆wk = εhks (v −wk) with hks = exp

(
−‖k− s‖A

2σ2

)
being the neighborhood function. Here 0 < ε � 1 is the learning rate and σ is
the neighborhood function. To keep the information of the subset Ṽ we also feed
these vectors into the training scheme. Because of the unknown concentration
information for these vectors ṽk only the spectral information is used for winner
determination. For prototype update we apply the spectral information and the
concentration estimations given by the current best matching unit.
After training, the unknown concentrations for the vectors ṽk can be estimated
by association, i.e. the winner s(ṽk) is determined and we simply set

ṽNB+i
k = wNB+i

s(ṽk)
for i = 1 . . .m as association step.

4 Application of structured information processing for an
EXAFS data set

For this application a dataset of n = 14 simulated EXAFS spectra with NB =
100 is used. The underlying chemical structure information assumes m = 4
components and a sinusoidal pure component spectrum according to sin(bj ·f) for
a given frequency vector f ∈ RNB [7]. Here we consider b = (0.125, 0.25, 0.5, 1)
for the different pure component spectra. We generated the simulated spectra
as mixtures of these pure components with a predefined mixing matrix Ĉ of
concentrations.
In the simulations we provided the concentrations only for m = 4 simulated
spectra to the above described processing algorithm using a SOM-grid A with
N = 15. Thus, these data play the role of the subset DS . For the SOM-training
the neighborhood range σ remains non-vanishing also during the convergence
phase of SOM-learning to keep the generalization ability of the model despite the
small number of available training data, which is a common procedure for those
cases [8]. Further, we applied a prototype correction to ensure the relation (4)
for the prototypes during the learning process. Thus, the structural knowledge
is used again.
After the application of the complete analysis procedure we obtain the estimated
concentrations for the remaining 10 spectra. We can compare them with the
original ones used for generating the simulated data set. As we can see in Fig.
1, we get accurate predictions. Thus, the association learning by SOMs together
with the utilization of the chemical structure information is able to estimate the
unknown concentrations quite well for this data set.

5 Conclusion

We propose a data analysis framework for spectral data processing in order to
estimate mixture concentrations in spectra composites under the assumption of
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Fig. 1: Comparison of the 4 original component concentrations (�) and the
respective predicted values (?) obtained from the structured data processing for
the 10 spectra not contained in DS .

sparsely available concentration information. This approach takes the structural
chemical information into account to generate an extended while reliable data
set, which then can be used for association learning in SOMs. We introduced the
method and explained, how the structural-chemical information is integrated.
We exemplary demonstrated the method for an artificial dataset. Yet, further
simulation and stability analysis is required. In particular, the influence of noisy
data has to be considered. Thus, the presented work is only a proof of concepts
so far, which has to be evaluated further in the next steps of our research.
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