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Abstract. In this paper, we introduce a kernel for monotone data de-
rived from the Choquet integral with its underlying fuzzy measure. While
a naïve computation of this kernel has a complexity that is exponential in
the number of data attributes, we propose a more efficient approach with
quadratic time complexity. Kernel PCA and SVM classification are em-
ployed to illustrate characteristics and benefits of the new Choquet kernel
in two experiments related to decision-making and pricing.
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1 Introduction

The Choquet integral is an aggregation operator that is commonly used in fields
such as multi-criteria decision making and decision under uncertainties [6, 10].
Being based on a non-additive measure on the set of attributes, it allows for
expressing positive and negative interactions between individual attributes (cri-
teria). At the same time, the Choquet integral guarantees monotonicity, i.e., a
monotone dependency of the aggregation on each individual attribute.

Generally, the problem of monotone classification and regression, in which
higher attributes induce higher explanatory variables, has received increasing
attention in neural networks [4,12] decision tree learning [9] and ensemble mod-
els [3] in recent years. The aforementioned ability of the Choquet integral to
model interactions between attributes is not limited to two-way interactions [8]
but may comprise any number of attributes; complex data properties can thus
be captured in a very flexible way [5]. The flexibility to account for relations
between all subsets of attributes comes at the cost of an exponential complexity.

In this paper, we propose a new kernel based on the Choquet integral that can
be computed in polynomial time. Equipped with this kernel, common spectral
methods for clustering and classification can be applied to given datasets. We
focus on support vector machines (SVM) and visualizations by means of kernel
principal component analysis for illustration purposes.

2 The Discrete Choquet Integral

The Choquet integral is a non-additive aggregation function defined by an un-
derlying fuzzy measure. Let C = {c1, . . . , cn} be a finite set and µ a measure
2C → [0, 1]. For each A ⊆ C, we interpret µ(A) as the weight of the set of
elements A. Additivity is a standard assumption on a measure µ(·), that is,
µ(A ∪B) = µ(A) + µ(B) for all A,B ⊆ C such that A ∩B = ∅. Unfortunately,
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such measures cannot model interaction between elements, because the exten-
sion of a set of elements A ⊆ C by a set of elements B ⊆ C \A always increases
the weight µ(A) by the weight µ(B), regardless of A and B.

As opposed to this, fuzzy measures can be non-additive and be used for mod-
eling higher-order interactions between attributes. Monotonicity is reflected by

µ(∅) = 0, µ(C) = 1 and µ(A) ≤ µ(B) for all A ⊆ B ⊆ C . (1)

The Möbius transform is a useful representation of non-additive measures:

µ(B) =
∑
A⊆B

m(A) with m(A) =
∑
E⊆A

(−1)|A|−|E| · µ(E) for all B ⊆ C . (2)

m(A) can be interpreted as the weight that is exclusively assigned to A, instead
of being indirectly connected with A through interaction with other subsets.

If ci ∈ C are considered as binary attributes encoding for presence or absence,
µ(A) can be seen as an integral of the indicator function fA of A given by
fA(c) = 1 if c ∈ A and = 0 otherwise. Alternatively, f : C → R+ can be any
non-negative function that assigns a value to each criterion ci. For example,
f(ci) might be the degree to which a criterion ci is satisfied. The aggregation
of function values f(ci) into an overall evaluation, weighted according to the
measure µ, can be expressed by an integral Cµ(f) of f w.r.t. to the measure µ.
Choquet defined this integral for an underlying fuzzy measure as [1]

Cµ(f) =
n∑
i=1

(
f(c(i))− f(c(i−1))

)
· µ(A(i)) . (3)

The notation (·) refers to a permutation of {1, . . . , n} such that 0 ≤ f(c(1)) ≤
f(c(2)) ≤ · · · ≤ f(c(n)) (with f(c(0)) := 0), and A(i) = {c(i), . . . , c(n)}. Using the
Möbius transform of µ, the Choquet integral can be rewritten as follows:

Cµ(f) =
n∑
i=1

f(c(i)) ·
(
µ(A(i))− µ(A(i+1))

)
=

n∑
i=1

f(c(i))
∑

R⊆T(i)

m(R)

=
∑
T⊆C

m(T ) ·min
i∈T

f(ci) with T(i) =
{
S ∪ {(i)} |S ⊂ {(i+ 1), . . . , (n)}

}
. (4)

The Möbius transform is a useful means to derive a Choquet kernel representa-
tion, because it allows for expressing the basis functions of the Choquet integral
in a monotonic way. We can rewrite the expression (4) as inner product

Cµ(f) =
∑
T⊆C

m(T ) ·min
i∈T

f(ci) =
〈

mI, ϕ
(
f(x)

)〉
. (5)
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The feature mapping function ϕ : Rn → R2n−1 and mI are defined as

ϕ(x) = ϕ(x1, ..., xn) =
(
x1, ..., xn,min{x1, x2}, ...,min{xn−1, xn}, (6)

min{x1, x2, x3}, ...,min{x1, ..., xn}
)
,

mI =
(

m
(
{c1}

)
,...,m

(
{cn}

)
,m
(
{c1, c2}

)
,...,m

(
{cn−1, cn}

)
,...,m

(
{c1,..., cn}

))
.

Thus, the explicit feature mapping of n-dimensional input vectors x implements
a minimization over all 2n − 1 subsets of attributes.

3 Choquet Kernel

The feature mapping is used to define an inner product between ϕ(x) and ϕ(x∗):〈
ϕ(x), ϕ(x∗)

〉
= x1x

∗
1 + . . .+ xnx

∗
n + min{x1, x2}min{x∗1, x∗2}+ . . .+

min{x1, x2, . . . , xn}min{x∗1, x∗2, . . . , x∗n}

We write
〈
ϕ(x), ϕ(x∗)

〉
=
∑
T⊆{1,...,n}mini∈T {xi} · mini∈T {x∗i } as KC(x,x∗)

and note that this summation gives rise to a valid kernel.
Explicit computation of the Choquet kernel KC(x,x∗) would involve 2n − 1

summands which is not very practical for higher-dimensional input vectors. By
reformulating the evaluation, the complexity can be reduced to O(n2). We
exploit the fact that the kernel expression is invariant under permutation, i.e.,

〈
ϕ(x), ϕ(x∗)

〉
=
〈
ϕ(σ

(
x)
)
, ϕ
(
σ(x∗)

)〉
=
〈
x,x∗

〉
+
n−1∑
i=1

xσi ·

{
n−i∑
s=1

℘(i, s)
}
,

with ℘(i, s) =
n∑

j=i+1

n∑
k=j+1

. . .
n∑

p=o+1︸ ︷︷ ︸
s-summations

min
{
x∗σi , x

∗
σj , x

∗
σk
, . . . , x∗σp

}
. (7)

The permutation σ describes the ordering xσ1 ≤ ... ≤ xσn of attributes of x.
Let ξ be a permutation of an ordered subset xξ1 ≤ . . . ≤ xξp of p elements, then

∑
T⊆{xξ1 ,...,xξp}

min{T} =
p−1∑
i=0

2p−1−i · xξi+1 . (8)

By using the fact that for any y, min
{
y, T

}
= min

{
y,min{T}

}
, we obtain

∑
∅6=T⊆{x∗

ξ1
,...,x∗

ξp
}

min{y, T} =
p−1∑
j=0

2p−1−j ·min{y, x∗Ψ∗
j
} . (9)
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Note that the left hand side in (9) is invariant under permutation, and in the
right-hand side x∗Ψ∗

j
is the j-th ordered value among {x∗ξ1

, . . . , x∗ξp}. Putting
everything together, an efficient formulation of the Choquet kernel is obtained:

KC(x,x∗) =
〈
x,x∗

〉
+
n−1∑
i=1

xσi ·


n−1−i∑
j=0

2n−1−i−j ·min
{
x∗σi , x

∗
Ψ∗
i,j+1

} . (10)

This involves a nested summation over weighted minima of permuted elements
and contains contributions of all subsets of attributes. Since these permutations
are related to the prior ordering of attributes in x and x∗, creating a complexity
of O(n · logn), this sums up to an overall quadratic time complexity.

4 Applications

The DenBosch database [2] contains descriptions of 120 houses in the city of
Den Bosch (NL) by 8 attributes: district, area, number of bedrooms, type of
house, volume, storeys, type of garden, and number of garages. The output is
a binary variable indicating whether the price of the house is low (61 instances)
or high (59 instances), depending on whether or not it exceeds a threshold.

The Choquet kernel is compared with the popular RBF kernel and the poly-
nomial kernel. While the feature space of RBF is infinitely dimensional, the
polynomial order is set to 8 to account for all 28 − 1 attribute interactions.
This makes polynomial and Choquet kernels structurally comparable. Opti-
mum SVM parameters were identified by five-fold nested cross validation. The
average 0/1-loss over 20 separate runs using the Choquet kernel on testing data
was 11.96%±6.89, 12.83%±4.98 for the RBF kernel and 22.60%±8.17 for the
polynomial kernel. Compared to RBF, the better average results of the Cho-
quet kernel come at the price of more unstable learning, indicated by larger
standard deviation.

Figure 1 shows the different arrangements of points in the feature spaces of
SVM models for the different kernels. The corresponding Gram matrices were
turned into 2-D scatter plots by using kernel PCA [11] with first and second
eigenvectors of the double-centered kernel-matrix shown as x- and y-axis, re-
spectively. Although a substantial loss of information can be assumed for the
2-D embeddings compared to the original data relationships, a structural differ-
ence between the plots can be observed. The RBF kernel (left) spreads points
quite well, but locally mixes up both classes. In contrast, the poly-8 kernel
(center) exhibits an uneven point distribution with a wide scatter of high price
houses. Class information for the Choquet kernel (right) coincides well with the
x-axes, if the horizontal scale is properly taken into account.

Since, in the current model, no explicit monotonicity constraints are used,
we cannot ensure the monotonicity of the measure extracted from the Choquet
kernel. Therefore, we propose an indicator of the degree of monotonicity:

Dµ =
∣∣{(A,B)|A ⊆ B, |A| = |B| − 1, µ(A) ≤ µ(B)}

∣∣
n · 2n ∈ [0, 1] . (11)
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Figure 1: Kernel PCA of DenBosch house data with RBF kernel (left), Choquet
kernel (center), and polynomial kernel (right). Black markers refer to low prices,
red (gray) points to high prices.

If all monotonicity constraints are fulfilled, i.e. Dµ = 1, µ is a fuzzy measure.
Here, the 5-fold cross validation led to an average of D80%

µ = 0.886. Thus, the
calculated Choquet kernel does not perfectly represent the Choquet integral.
Yet, it performs fairly well.

The WEKA employee selection database [7] contains profiles of appli-
cants for industrial jobs. Four input attributes contain ordinal assessments of
psychometric test results from candidate interviews. The output is an over-
all score on an ordinal scale between 1 and 9, corresponding to the degree of
suitability of each candidate to this type of job. For binary classification, 248
suitable candidates (score 6–9) are to be distinguished from 240 unsuitable (score
1–5) subjects. Again, five-fold nested cross validation was carried out. The av-
erage 0/1-loss test error over 20 separate runs using the Choquet kernel was
5.10%±1.91, 10.41%±7.21 for a poly-4 kernel, and 7.11%±2.78 for the RBF ker-
nel. The average degree of monotonicity in this 5-fold cross validation training
is D80%

µ = 0.9936. Thus, almost all monotonicity constraints are fulfilled, which
explains the excellent behavior of the Choquet kernel.

5 Discussion and Conclusions

The parameter-free Choquet kernel and its efficient realization has been intro-
duced for analysing monotone data. Two applications illustrate specific feature
mapping properties of the new kernel: ordering relationships among attributes
can be naturally accounted for in learning scenarios such as pricing and survey
data. The structure of the proposed Choquet kernel is quite different from RBF
kernels. Like polynomial kernels with order of data dimensionality, higher-order
interactions between attributes are modeled, but without similarly strong over-
fitting at high orders. As shown for the employee data, Choquet kernels are
designed to model monotonicity. The current work properly represents the Cho-
quet integral for full monotonicity with Dµ close to 1. To cope with data like the
DenBosch set with Dµ = 0.886 or with more general data, upcoming research
seeks for correction strategies of the fuzzy measure to induce monotone kernels.
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So far, n-additivity is modeled in the Choquet formalism; this means that inter-
actions from all possible subsets are taken into account. To decrease the com-
plexity of this huge internal dependence structure, the cardinality of modeled at-
tribute subsets could be restricted to k < n, i.e., to k-additive Choquet integrals.
In this case, the proposed all-subset simplification does no longer work. While
2-additivity can be expressed as Kk=2

C (x,x∗) = 〈x,x∗〉 +
∑
i<j min(xi, xj) ·

min(x∗i , x∗j ), larger k < n involve much more complex terms and longer run
times. Low-order additivity might better reflect weak dependencies between
attributes in real-life data sets. Thus, automatic order estimation as well as
related performance studies point into important directions of future work.
Programs are online available at https://mloss.org/software/view/537
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