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Abstract. To avoid the undesired effects of distance concentration in
high-dimensional spaces, previous work has already advocated the use of
fractional �p norms instead of the ubiquitous Euclidean norm. Closely re-
lated to concentration is the emergence of hub and anti-hub objects. Hub
objects have a small distance to an exceptionally large number of data
points while anti-hubs lie far from all other data points. The contribution
of this work is an empirical examination of concentration and hubness, re-
sulting in an unsupervised approach for choosing an �p norm by minimizing
hubs while simultaneously maximizing nearest neighbor classification.

1 Introduction and Related Work

This work examines fractional �p norms in high-dimensional spaces in the context
of the problem of hubs. A number of publications [1, 2, 3] have recently focused
on the emergence of hubs as a new aspect of the curse of dimensionality [4]. Hubs
have an exceptionally low distance to a high number of objects and therefore are
nearest neighbors of an exceptionally large percentage of other data points. As
a result, other objects (anti-hubs) are pushed out of all nearest neighbor lists. It
was shown that this behavior has a negative impact on many machine learning
tasks including classification [1], nearest neighbor based recommendation [5, 6],
outlier detection [1, 7] and clustering [8].

The hubness problem is closely linked to the concentration of distances in
high-dimensional data spaces [1]. Concentration is the surprising characteristic
of all points in a high-dimensional space to be at almost the same distance to all
other points in that space [9]. It is usually measured as a ratio between spread
and magnitude, e.g. the ratio between the standard deviation of all distances to
an arbitrary reference point and the mean of these distances. If the standard
deviation stays more or less constant with growing dimensionality while the mean
keeps growing, the ratio converges to zero with dimensionality going to infinity.
In such a case the distance contrast decreases and it is said that the distances
concentrate. Proofs concerning concentration of distances and all points being
at the same distance to all other points have been formulated for dimensionality
approaching infinity. Radovanović et al. [1] presented the argument that in the
finite case, some points are expected to be closer to the center than other points
and are at the same time closer, on average, to all other points. Such points
closer to the center have a high probability of being hubs, i.e. of appearing
in nearest neighbor lists of many other points. Points which are further away
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from the center have a high probability of being ’anti-hubs’, i.e. points that never
appear in any nearest neighbor list. This was evaluated for cosine and Euclidean
(�2) norm on real world data but also observed for �0.5 using i.i.d. normal and
uniform data. It is also important to note that the degree of concentration and
hubness is linked to the intrinsic rather than extrinsic dimension of the data
space.

The concentration effect was studied by Aggarwal et al. [10] for Euclidean
and fractional �p norms. In fact Aggarwal et al. come to the conclusion that from
a theoretical and empirical perspective the Euclidean (�2) norm is often not the
preferred metric for high-dimensional data mining applications since fractional
norms provide a higher distance contrast. Experiments also show that choosing
the right fractional norm as opposed to the Euclidean norm could significantly
improve the effectiveness of standard k–nearest neighbor (kNN) classification
in high-dimensional spaces. This observation was more closely investigated by
François et al. [11] who follow a supervised approach to infer the optimum �p

norm using labeled training data.
Our work pursues the ideas of Aggarwal et al. [10] and François et al. [11]

in the light of the effects of hubs and anti-hubs. We show empirically that the
degree of hubs and anti-hubs in a data set can help selecting the optimum �p

norm. Based on these results we propose a fully unsupervised approach for
choosing an �p norm which maximizes nearest neighbor classification.

2 Methods and Data

Hubs and anti-hubs are found by looking at all kNN lists of a data set X. For
a given neighborhood size k, the k-occurrence (Ok(x)) of a point x ∈ X is then
computed by counting the number of occurrences of x in the kNN of each point
xi ∈ X,xi �= x. Using Ok we then define hubs (Hk) and anti-hubs (Ak) as:

Ak =
{
a ∈ X|Ok(x) = 0

}
, Hk =

{
h ∈ X|Ok(x) ≥ 2k

}
.

Anti-hubs (A) never occur in the kNN, i.e. have a Ok of zero, while hubs (H)
occur equal or more than twice as often (2k) as expected. To asses the overall
impact of hubness in a data set Radovanović et al. [1] proposed to compute
‘hubness’ (Sk) which he defined as the skewness of the histogram of the Ok.
The higher the measured sample skewness of the Ok histogram, the higher the
impact of hubs in the kNN:

Sk =
E
[
(Ok − μOk)3

]

σ3
Ok

.

We use this measure to identify high-dimensional data sets showing strong
hubness in the Euclidean space by choosing data sets where Sk=5 > 2.1 The data
sets identified are: Protein, Splice, Gisette and Dexter from the UCI machine

1Methods for hubness data analysis are available in our Matlab hub–toolbox:
http://www.ofai.at/research/impml/projects/hubology.html
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learning archive [12], two standard image-classification data sets (Leeds Butter-
fly [13], 17 Flowers [14]) and a data set from the text-retrieval domain,Twitter
(C1ka) [15]. The dimensionality dim, size of data set n and hubness Sk=5 of
the original Euclidean space is listed in Table 1. Data sets are used as they
are available on their respective websites without any additional normalization.
The extrinsic dimensionality ranges from 60 (Splice) to 49 820 (Twitter (C1ka))
while the measured hubness goes from rather moderate values of 2.9 (Gisette
and Dexter) to extreme values of 43.1 (Protein) in �2.

Like Aggarwal et al. [10] we will evaluate the impact of changing the �p

norm by reporting the kNN classification accuracy using leave-one-out cross-
validation. The classification is performed via a majority vote among the k
nearest neighbors, with the class of the nearest neighbor used for breaking ties.
We denote the kNN accuracy as Ck. In the context of a retrieval problem, higher
values would indicate better retrieval quality.

3 Experiments and Results

To measure the impact of hubs and anti-hubs on a given data set we propose
two measures (i) anti-hub occurrence (Ak

occ) and (ii) hub occurrence (Hk
occ).

Whereas Ak
occ is the percentage of data points that act as anti-hubs, Hk

occ is the
percentage of hub points in all kNN lists. We include these measures in our
experiments to evaluate a given �p norm in terms of anti-hubs and hubs at a
selected neighborhood radius k:

Ak
occ =

1

|X|
∣∣Ak

∣∣ , Hk
occ =

1

|X|
∑

h∈Hk

Ok(h)

k
.

We do not use the hubness measure (Sk), i.e. the skewness of the Ok, since it does
not equally account for hubs and anti-hubs in the measurements. By computing
the sample skewness, hubs with a theoretical maximum Ok(h) = |X|− 1, have a
much higher influence on the measure than anti-hubs since their difference to the
μOk contributes to Sk to the third power. Additionally our experiments with
Sk in this context did not show a smooth but oscillating change of values when
stepping through the �p norms, making Sk unfit for our purpose.

To investigate the relation of hubs and anti-hubs to a certain �p norm we
compute Ak

occ and H
k
occ for our selected data sets. We set our neighborhood size

to k = 1 (i.e., we only look at each point’s nearest neighbor) while changing the
�p norm from p = 0.25, 0.5, 0.75, . . . , 4. For each step in p we compute the kNN
classification rate Ck=5. Figure 1 plots the results for each of the selected data
sets. Ak

occ is plotted in the first column of the figures, Hk
occ in the second column

and the classification rate Ck=5 in the third column of the figures. Each of the
measures is computed while varying the p as discussed. Please note that results
using a larger neighborhood size to compute Ak

occ and Hk
occ or with one nearest

neighbor classifciation (Ck=1) did not substantially change the following results.
Looking at the figures we first note a very high similarity between the anti-

hub (Ak
occ) and hub (Hk

occ) curves. This behavior is expected as a higher number
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Fig. 1: The minimum in anti-hub (Ak
occ) and hub (Hk

occ) occurrence while chang-
ing the �p norm is closely related to the maximum kNN classification rate (Ck).
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dataset dim n Sk=5 original max. Ck estimated max.
using Ak

occ

estimated max.
using Hk

occ

�p Ck=5 �p Ck=5 �p Ck=5 �p Ck=5

Dexter 20 000 300 2.9 2 64.3% 1.75 77.3% 2 64.3% 2.25 52.0%
Gisette 5 000 6 000 2.9 2 93.5% 0.5 93.9% 1.5 93.8% 1.25 93.7%
Leeds Butt. 36 000 832 3.5 2 50.4% 1.5 51.7% 1.25 51.0% 1.75 51.0%
17 Flowers 36 000 1 360 3.9 2 42.3% 1 43.1% 1 *43.1% 1 *43.1%
Splice 60 1 000 5.6 2 69.4% 0.5 77.7% 0.25 77.5% 0.25 77.5%
Twitter 49 820 969 14.6 2 10.3% 4 19.6% 4 *19.6% 4 *19.6%
Protein 357 6 621 43.1 2 52.1% 1 56.6% 1 *56.6% 1 *56.6%

Table 1: Data sets, their dimensionality dim and size n, classification rates (Ck)
in the original Euclidean space (�2), possible maximum (max. Ck) and estimated
maximum �p using Ak

occ and Hk
occ. Better or equal Ck when compared to the

original data in bold, an asterisk indicates that respective methods were able to
find the maximum.

of objects not occurring in the kNN at all has to lead to higher Ok values for the
remaining objects. Additionally the change in the kNN classification accuracy
(Ck) seems to be in accordance with Aggarwal et al. [10] with the values peaking
at p �= 2. Furthermore and more interestingly the peak in Ck seems to concur
with either Ak

occ or Hk
occ being at or close to their minimum. In view of the

fact that neither the computation of Ak
occ nor H

k
occ include any knowledge about

classes these empirical results give a strong argument that both measures could
be effective for choosing the optimum �p norm.

Table 1 summarizes the results. In the table we list the original kNN classifi-
cation rate (Ck) in �2, the actual maximum and the two estimated maxima using
Ak

occ and Hk
occ. In three data sets (17 Flowers, Protein and Twitter (C1ka)) we

are able to identify the best �p norm according to Ck by using the minima of
both Ak

occ or Hk
occ. The increase in Ck ranges from 0.9 to 9.3 percentage points.

The optimum norm is twice �1 and once �4. In three further cases (Splice, Gisette
and Leeds Butterfly) both measures are able to identify a better �p norm than
the Euclidean base case, but closely fail to identify the possible maximum. The
increase in Ck ranges from 0.4 to 8.1 percentage points. In the case of Dexter
and by using Hk

occ (p = 2.25) as decision, the proposed method would lead to
a drop in classification accuracy by 12.3 percentage points. Using Ak

occ however
would stay with the Euclidean norm, thus suggesting no change of norm. The
theoretical maximum is at p = 1.75. Upon closer inspection of the results, we
see Hk

occ closely missed �2 because a single hub occurrence (Ok(h)) is increased
by a count of 1 (and the theoretical Ck maximum is missed due to an increase
of 4 counts). The small data set size (|X| = 300) could be the cause for this
result.

4 Summary

This work linked finding the optimum �p norm (in terms of kNN classifica-
tion rates) for high-dimensional data to hubs and anti-hubs occurring in high-

387

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.



dimensional data. In an empirical study we presented strong evidence that the
optimum �p norm for data sets with high hubness in the Euclidean space can be
found at values of p, where hubs and anti-hubs have their minimal impact on the
data. To identify these points we propose to measure the hub (Hk

occ) or anti-hub
(Ak

occ) occurrence as defined in this work. Using these measures we were able to
identify better norms in six of the seven analyzed data sets.
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