
Exploiting Similarity in System Identification
Tasks with Recurrent Neural Networks

Sigurd Spieckermann1,2, Siegmund Düll1,3, Steffen Udluft1,
Alexander Hentschel1, Thomas Runkler1,2

1- Siemens Corporate Technology – Learning Systems
Otto-Hahn-Ring 6 – 81739 Munich, Germany

2- Technical University of Munich – Department of Informatics
Boltzmannstr. 3 – 85748 Garching, Germany

3- Berlin University of Technology – Machine Learning
Franklinstr. 28-29 – 10587 Berlin, Germany

Abstract. A new dual-task learning approach based on recurrent neural
networks with factored tensor components for system identification tasks
is presented. The overall goal is to identify the underlying dynamics of
a system given few observations which are augmented by auxiliary data
from similar systems. The resulting system identification is motivated by
various real-world industrial use cases, e.g. gas or wind turbine modeling
for optimization and monitoring. The problem is formalized and the effec-
tiveness of the proposed method is assessed on the cart-pole benchmark.

1 Introduction

The dynamics of complex technical systems such as gas or wind turbines can be
approximated by data driven models, e.g. recurrent neural networks [1]. Such
methods have proven successful to be powerful alternatives to analytical models
which are not always available or inaccurate [2]. Optimizing the parameters of
these models often requires large amounts of operational data. However, data is
a scarce resource in many applications, hence, data efficient procedures utilizing
all available data are preferred. The following real-world scenario is one among
many that motivated the research presented in this paper.

Consider an industrial plant that is subject to modifications over time. Dur-
ing normal operation, the system behavior is observed and a simulation model
is trained from the collected data. In consequence of the modifications made
to the plant, its dynamical properties change invalidating the available model.
However, an accurate model is needed as soon as possible after recommission-
ing the plant. The fact that the overall plant remains the same, and thus no
fundamental change of the general structure and complexity of the dynamics is
expected, suggests to exploit information collected prior to modifications.

The contributions of this paper comprise the formal definition of the con-
sidered problem class (section 2), the presentation of a variety of methods, in
particular the Factored Tensor Recurrent Neural Network, that allow to share
information between similar dynamical systems (section 3) and the assessment
of their effectiveness based on experiments with the frictionless cart-pole bench-
mark [3, 4] (section 4). The choice of using the cart-pole benchmark for the

473

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

experiments is due to its intuitive dynamics which eased the process of instanti-
ating appropriate similar systems. Section 5 concludes the results and outlines
future work.

2 Problem Definition

Let I := {1, 2} denote a set of identifiers for fully observable deterministic similar
dynamical systems, which are observed in fixed time intervals τ , defined by the
tuple (S,A, f) with a state space S, an action space A, and an unknown state
transition function f : I × S ×A→ S describing the temporal evolution of S.

A data setD =
⋃

i∈I Di of size |D|, consisting of observations (i, s, a, s′) ∈ Di,
is drawn i.i.d. from a probability distribution D. Each observation contains
information about system i ∈ I of a single state transition from state s ∈ S to
state s′ ∈ S caused by the momentum and the effect of action a ∈ A.

Let H ⊆ {h |h : I ×S×A→ S} denote a hypothesis space, i.e. a set of func-
tions that are assumed to approximate the state transition function f . Further,
let h∗ ∈ H be the optimal hypothesis of f within H, i.e. the best approxi-
mation of f within the considered space of hypotheses. Let L : S × S → R≥0

be an error metric between a predicted successor state ŝ′ = h(i, s, a) and the
true successor state s′. The optimal hypothesis h∗ minimizes the expected er-
ror ε(h) := E(i,s,a,s′)∼D[L(h(i, s, a), s′)] where E denotes the expectation oper-
ator, hence, h∗ = argminh ε(h). Since D is generally unknown, an approxi-

mately optimal hypothesis ĥ is determined by minimizing the empirical error
ε̂D(h) := 1

|D|
∑

(i,s,a,s′)∈D L(h(i, s, a), s′) induced by a hypothesis h on a data

set D.
Let h∗i be the optimal hypothesis of the dynamics of system i within H.

Given sufficient data D1, ĥ1 is close to h∗1. In contrast, assuming the amount

of data D2 is insufficient, ĥ2 is expected to differ significantly from h∗2. The
problem addressed in this paper is to develop and assess methods that yield
a better hypothesis ĥ2 by exploiting auxiliary information from D1 given the
considered systems are sufficiently similar.

3 System Identification with RNNs

In general, the dynamics of a fully observable deterministic dynamical system
can be described by some function st+1 = f(st, at). However, in practice the
learning process of this function often benefits from predicting the sequence
of successor states st+1, ..., st+T given a trajectory of actions at, ..., at+T−1 for
T ∈ N≥2 time steps instead of predicting only a single step.

Let nl denote the dimensionality of layer l in a neural network. Recur-
rent neural networks (RNNs) are powerful models for sequence modeling tasks.
In contrast to feedforward neural networks, RNNs process their input vectors
x1, ..., xT , xt ∈ R

nx , sequentially along the time axis thereby taking its sequen-
tial structure directly into account. The input sequence is mapped to a hidden
state sequence h1, ..., hT , ht ∈ R

nh , from which the output sequence ŷ1, ..., ŷT ,

474

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

yt ∈ R
ny , is computed. Notation is slightly abused by overloading the variable h

to describe the hidden state of an RNN as well as a hypothesis. A simple RNN
is defined for t = 1, ..., T in the following recursive manner

h0 = hinit (1a)

ht = σh(Whxxt +Whhht−1 + bh) (1b)

ŷt = σy(Wyhht + by) (1c)

where Wvu ∈ R
nv×nu is the weight matrix from layer u to layer v, bv ∈ R

nv

is the bias vector of layer v and σ(·) is an elemenwise nonlinear function, e.g.
tanh(·).

3.1 RNN and Näıve RNN

In the context of modeling the dynamics of an open system, a recurrent neural
network may be defined by the following equations.

h1 = σh(Whss1 + b1) (2a)

ht+1 = σh(Whaat +Whhht + bh) (2b)

ŝt+1 = σs(Wshht+1 + bs) (2c)

The initial state s1 is mapped into the hidden state space of the RNN by a linear
transformation followed by the nonlinear function σh(·). The state space of a
dynamical system is often real-valued and unbounded, hence, σs(·) becomes the
identity function.

The most näıve approach to exploit information from one dynamical system
and share it with another one is to mix the data of both systems and train a joint
model. This way, the model is forced to generalize over the different properties
of the systems. However, since the training examples of both systems are not
distinguished, the model can only learn the average dynamics which may be
vastly suboptimal for rather different systems.

3.2 RNN+ID

One way to incorporate information that allows the model to distinguish between
the systems is to tag each training example with an identifier i ∈ I corresponding
to the system which generated the data. This tag is provided as an extra input
z to the model at each time step encoded as the i-th Euclidean basis vector ei
with dim(ei) = |I|, hence, z ∈ {e1, ..., e|I|}. The resulting RNN is described by
the following equations.

h1 = σh(Whss1 + b1) (3a)

ht+1 = σh(Whaat +Whhht +Whzz + bh) (3b)

ŝt+1 =Wshht+1 + bs (3c)

In fact, computing Whzz is equivalent to selecting the i-th column of Whz so
the cart-pole identifier input introduces a separate bias for each cart-pole. The
shared bias bh and the specific biases accessed through Whzz can be combined.

475

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

3.3 Factored Tensor RNN (FTRNN)

The Factored Tensor Recurrent Neural Network (FTRNN) is a modification
of the Tensor Recurrent Neural Network (TRNN) as denoted in [5, 6]. The
TRNN implies the idea of replacing some or all weight matrices by tensors where
each slice of a tensor is associated with a particular system. Since using full
tensors introduces many additional parameters and allows for merely limited or
no information sharing, a factored tensor of the form

Wvuzz ≈Wvf diag(Wfzz)Wfu (4)

with Wvuz ∈ R
nv×nu×|I|, Wfu ∈ R

nf×nu , Wvf ∈ R
nv×nf , and Wfz ∈ R

nf×|I|

was suggested. Thus, the FTRNN is defined by the equations

h1 = σh(Whss1 + b1) (5a)

ht+1 = σh(Whfa diag(Wfazz)Wfaaat +

Whfh diag(Wfhzz)Wfhhht + bh)

(5b)

ŝt+1 =Wshht+1 + bs. (5c)

Only relatively few parameters are specific to each system forcing the model
to disentangle properties of the dynamics that are common to all systems from
those that are distinct. In some sense, every system has its own set of functions
describing the contributions of the previous hidden state and the current ex-
ternal force to yield the current hidden state. However, these functions are not
independent for each systems since they are composed of two shared components
and one distinct component.

4 Experiments

The evaluation of the methods described in section 3 was performed on the
frictionless cart-pole simulation [4] observed every τ = 0.02 s. Contrary to
settings used in common reinforcement learning tasks, no constraints were en-
forced on the cart position or the pole angle. In order to avoid discontinuities
in the representation of the pole angle when the pole swings beyond 180◦, its
decomposition into the sine and cosine components was used. Two cart-pole
instances (CP1 and CP2) were configured to have the pole lengths 0.5 and
1.0, and the pole masses 0.05 and 0.1, respectively. The data sets D1 and
D2 were obtained by observing the state transitions (i, s, a, s′) along a trajec-
tory of 1000 actions drawn i.i.d. from the uniform distribution U(−1, 1). After
every 1000 steps, the simulation was reset to its initial state. D1 consisted
of 15 000 examples (i = 1, s1, a1, ..., sT , aT , sT+1) and was split into a train-
ing set DT,1 containing 10 000 examples and a validation set DV,1 sized 5000.
The data set D2 was obtained the same way, however, training and validation
set sizes were reduced and upsampled to their original sizes in the various ex-
periments. The loss function for training was chosen to be the mean squared

476

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

error (MSE) between the predicted and the true successor state sequence, i.e.

L(ŝ2, ..., ŝT+1, s2, ..., sT+1) =
1
2

∑T
t=1 ‖st+1 − ŝt+1‖22.

All experiments were implemented using Theano [7]. The parameters of the
models were optimized using Hessian-Free optimization with structural damping
[8]. The maximum number of parameter updates was set to 10 000, the number of
CG iterations per update was limited to 150. Due to the relatively small amount
of overall training data, the gradient was computed using the full training set and
the curvature was estimated using 5000 examples drawn i.i.d. from the training
set. An early stopping procedure with a patience time of 100 updates was used
to reduce overfitting.

Figure 1 depicts the median performance of five runs with T = 10, i.e. the
MSE per state component per time step yielded by the different models on
a representative generalization set DG,2 sized 30 000. In each run, the initial
model parameters were sampled at random. For all networks, the hidden state
dimension was set to nh = 10. The FTRNN used nfh = nh and nfa = 2. The
simple RNN model was only trained on data from CP2. The other models, i.e.
the Näıve RNN, RNN+ID and FTRNN, were trained on the combined data
set D1 ∪ D2. The experimental results show that the simple RNN performed
well for 10 000 training examples but degraded rapidly for smaller data set sizes.
Surprisingly, a considerable improvement could be achieved by the Näıve RNN,
which simply combines the data from both cart-poles without any awareness of
the two systems, even for small amounts of data from CP2. The RNN+ID model
yielded an expected improvement over the Näıve RNN since it was provided
information to actually distinguish the two cart-poles and hence was able to
adjust to the different dynamical properties. However, as shown in section 3.2,
the system identifier merely acts as a specific bias in the hidden state of the
RNN being limited in its ability to properly account for the similar but non-
identical state transition function of the two cart-poles. For a training data
ratio of 10 000 : 625 · 16, the RNN+ID was inferior to the Näıve RNN which
might be a result of overfitting the bias parameters. The FTRNN outperformed
the Näıve RNN and the RNN+ID models for larger amounts of examples from
CP2, but struggled with significantly reduced amounts of data thereof. Again,
this might have been caused by overfitting the parameters specific to CP2. While
the FTRNN approach seems conceptually promising, further research is required
to investigate this issue more closely.

5 Conclusion

The problem class of modeling a set of dynamical systems by sharing information
among the systems was introduced, motivated and formalized. The Factored
Tensor Recurrent Neural Network (FTRNN) architecture was presented and its
effectiveness and potential was assessed in a series of experiments using the cart-
pole simulation. The FTRNN was compared to three variants of recurrent neural
networks using different approaches of information sharing. It showed superior
performance compared to the Näıve methods for reasonably unbalanced data

477

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

625 1250 2500 5000 10000
10−4

10−3

10−2

10−1

|DT,2|

M
ed
ia
n

1
T

d
im

(S
)
ε̂ D

G
,2
(ĥ
)

RNN
Näıve RNN
RNN+ID
FTRNN

625 1250 2500 5000 10000
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

|DT,2|

M
ed
ia
n

1
T

d
im

(S
)
ε̂ D

G
,2
(ĥ
)

RNN
Näıve RNN
RNN+ID
FTRNN

Fig. 1: Median error of five training runs per model. The error is the MSE
per state component per time step between the predicted and the true successor
state sequence plotted against the varying training set sizes of CP2 for a fixed
number of |DT,1| = 10 000 training examples of CP1.

distributions but degraded for significant imbalances which might be attributed
to overfitting.

Current and future work includes a more detailed analysis of the degradation
of the FTRNN for extreme data imbalances, other simulations than the cart-
pole, information sharing among more than two systems, the effect of noisy
observation functions and adapting the method for partially observable systems.

References

[1] Coryn A. L. Bailer-Jones, David J. C. MacKay, and Philip J. Withers. A recurrent neural
network for modelling dynamical systems. Network: Computation in Neural Systems,
9(4):531–547, 1998.

[2] Anton M. Schäfer, Daniel Schneegass, Volkmar Sterzing, and Steffen Udluft. A neural
reinforcement learning approach to gas turbine control. In Proceedings of the International
Joint Conference on Neural Networks, pages 1691–1696, 2007.

[3] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction,
volume 1. Cambridge University Press, 1998.

[4] Razvan V. Florian. Correct equations for the dynamics of the cart-pole system. Center
for Cognitive and Neural Studies (Coneural), Romania, 2007.

[5] Ilya Sutskever, James Martens, and Geoffrey E. Hinton. Generating text with recurrent
neural networks. In Proceedings of the 28th International Conference on Machine Learn-
ing, pages 1017–1024, 2011.

[6] Graham W. Taylor and Geoffrey E. Hinton. Factored conditional restricted boltzmann
machines for modeling motion style. In Proceedings of the 26th International Conference
on Machine Learning, pages 1025–1032. ACM, 2009.

[7] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano:
a CPU and GPU math expression compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy), June 2010. Oral Presentation.

[8] James Martens and Ilya Sutskever. Training deep and recurrent networks with Hessian-
Free optimization. In Neural Networks: Tricks of the Trade, pages 479–535. Springer,
2012.

478

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

