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Abstract. Spectral clustering has taken an important place in the context of pattern
recognition, being a good alternative to solve problems with non-linearly separable
groups. Because of its unsupervised nature, clustering methods are often paramet-
ric, requiring then some initial parameters. Thus, clustering performance is greatly
dependent on the selection of those initial parameters. Furthermore, tuning such
parameters is not an easy task when the initial data representation is not adequate.
Here, we propose a new projection for input data to improve the cluster identifi-
cation within a kernel spectral clustering framework. The proposed projection is
done from a feature extraction formulation, in which a generalized distance involv-
ing the kernel matrix is used. Data projection shows to be useful for improving the
performance of kernel spectral clustering.

1 Introduction

Spectral clustering is a suitable technique to deal with grouping problems involving
unlabeled-data, especially when clusters are hardly separable. Many approaches have
been proposed, ranging from the basic methods that include binary cluster indicators
heuristically resulting from a normalized cut-based formulation [1] to the more elab-
orated kernel-based methods employing least squares-support vector machines (LS-
SVM) [2]. In particular, kernel methods are of great interest since they allow to incor-
porate prior knowledge into the clustering procedure [3]. Due to its unsupervised na-
ture, clustering is very often a parametric procedure, and then a set of initial parameters
should be properly selected to avoid any local optimum solution. Typically, the initial
parameters are the kernel or similarity matrix and the number of groups [4]. Nonethe-
less, in some problems when data are represented in a high-dimensional space and/or
data-sets are complex and linearly non-separable, a proper feature extraction may be
an advisable alternative [5]. In particular, a projection generated by a proper feature
extraction procedure may provide a new feature space wherein the clustering procedure
can reach more accurate cluster indicators. In other words, data projection accom-
plishes a new representation space, where the clustering can be improved, in terms of a
given mapping criterion, rather than performing the clustering procedure directly over
the original input data.
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The present work introduces a projection focusing on a better analysis of the struc-
ture of data that is devised for a concrete method, namely, the Kernel Spectral Clustering
(KSC) [2]. Since data projection can be seen as a feature extraction process, we pro-
pose theM-inner product-based data projection [6], in which the similarity matrix is
also considered within the projection framework, similarly as discussed in [7]. There
are two main reasons for using data projection to improve the performance of kernel
spectral clustering: firstly, the data global structure is taken into account during the
projection process and, secondly, the kernel method exploits the information of local
structures. The proposed method, termed Projected Kernel Spectral Clustering (PKSC)
is compared with the baseline KSC, as well as multi-cluster spectral clustering [1], ker-
nel k-means and min-cuts [3]. Clustering performance is tested on images extracted
from the free access Berkeley Segmentation Data Set [8] as well as data sets from the
UCI repository [9].

This paper is organized as follows: Section 2 describes the KSC method. In section
3, we introduce the data projection for KSC. In section 4 are shown some experimental
results and discussion. Finally, section 5 holds the conclusions.

2 Kernel Spectral Clustering

The aim of clustering is to split an input data matrixX ∈ RN×d, such thatX =

[x⊤1 , . . . ,x
⊤
N ], into K disjoint subsets, wherexi ∈ R

d is the i-th d dimensional data
point, N is the number of data points, andK is the number of desired groups. Em-
ployed method, herein termedKernel Spectral Clustering (KSC) [2], is based on a
weighted kernel principal component analysis (WKPCA) interpretation of spectral clus-
tering with primal-dual least-squares SVM formulations, for which the following vector
clustering model is introduced: Lete(l) ∈ RN be thel-th projection vector, which is as-
sumed in the following latent variable form:e(l)

= Φw(l)
+ bl1N , l ∈ {1, . . . , ne}, where

w(l) ∈ Rdh is thel-th weighting vector,bl is a bias term, andne is the number of consid-
ered latent variables. Notation1N stands for aN-dimensional all-ones vector, and the
matrix Φ =

[
φ(x1)⊤, . . . ,φ(xN)⊤

]
, Φ ∈ RN×dh , is a high dimensional representation

of data. The functionφ(·) maps data from the original dimension to a higher onedh

(φ(·) : Rd → Rdh ). Therefore,e(l) represents the latent variables from a set ofne binary
cluster indicators obtained with sign(e(l)), which are encoded to obtain theK resulting
groups. Grounded on the least-squares SVM formulation of the model, the following
optimization problem can be stated:

max
E,W ,b

1
2N

tr(E⊤V EΓ ) −
1
2

tr(W ⊤W ) s. t. E = ΦW + 1N ⊗ b
⊤, (1)

whereE = [e(1), · · · , e(ne)], E ∈ RN×ne , V ∈ RN×N is the weight matrix for projec-
tions,Γ = Diag([γ1, . . . , γne ]), γl ∈ R

+ is thel-th introduced regularization parameter,
W = [w(1), · · · ,w(ne)], W ∈ Rdh×ne , andb = [b1, . . . , bne ], b ∈ R

ne . Notations tr(·) and
⊗ denote the trace and the Kronecker product, respectively. Also, taking into account
that the kernel matrix represents the similarity matrix of a graph withK connected
components as well asV = D−1 whereD ∈ RN×N is the degree matrix defined as
D = Diag(Ω1N); then theK − 1 eigenvectors contained inA, associated to the largest
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eigenvalues, are piecewise constant and become indicators ofthe corresponding con-
nected parts of the graph. Therefore, valuene is fixed to bek − 1 [2]. With the aim of
achieving a dual formulation, but satisfying the conditionb⊤1N = 0 by centering vector
b (i.e. with zero mean), the bias term is in the formbl = −1/(1⊤NV 1N)1⊤NV Ωα(l). Thus,
the solution of problem of Eq. (1), via Karush-Kuhn-Tucker (KKT) conditions over its
Lagrangian, is reduced to the following eigenvector-related problem:AΛ = V HΩA,
where matrixH ∈ RN×N is the centering matrix that is defined asH = IN −1/(1⊤NV
1N)1N1

⊤
NV , (IN denotes aN-dimensional identity matrix) andΩ = [Ωi j], Ω ∈ RN×N ,

beingΩi j = K(xi,x j) = φ(xi)⊤φ(xi), i, j ∈ 1, . . . ,N. NotationK(·, ·) : Rd × Rd → R

stands for the introduced kernel function. As a result, the set of projections can be cal-
culated as follows:E = ΩA+1N⊗b

⊤. Once the projections are calculated, we proceed
to carry out the cluster assignment by following an encoding procedure applied on the
same projections. Because each cluster is represented by a single point in theK − 1-
dimensional eigenspace, such that those single points are always in different orthants
due also to the KKT conditions, we can encode the eigenvectors considering that two
points belong to the same cluster if they are in the same orthant in the corresponding
eigenspace [2]. Then, a codebook can be obtained from the rows of the matrix contain-
ing theK − 1 binarized leading eigenvectors in the columns, by using sgn(e(l)). Then,
matrix Ẽ = sgn(E) becomes the codebook being each row a codeword.

3 Data Projection improving Kernel Spectral Clustering

The proposed improving data projection is summarized as follows: Given both an input
data matrixX , as well as any orthonormal rotation matrix,QTQ = Id, Q ∈ R

d×d,
then, we can introduce a linear data projection, ruled by the expressionY = XQ,

whereY ∈ RN×d. Furthermore, to accomplish the dimension reduction, we consider
the approximated rotation matrix̂QTQ̂ = Ip, Q̂ ∈ R

d×p, which is a truncated represen-
tation ofQ, wherep < d. Likewise, a truncated linearly projected datâY ∈ RN×p is
introduced, such that̂Y = XQ̂. Consequently, we can yield an expression for the re-
constructed data matrix̂X = Ŷ Q̂⊤, X̂ ∈ RN×d . SinceQ̂ is p-dimensional,X̂ becomes
a lower rank matrix representing the original dataX. In order to obtain a rotation ma-
trix Q̂, such thatŶ holds the projected vectors mostly contributing to the explained
variance regarding matrixΣ, and using theM-inner [6] norm as a distance measure to
quantify the quality of provided data projection, it is possible to device the following
optimization problem:

min
Q̂

||X − X̂ ||2Σ = max
Q̂

tr(Q̂⊤X⊤ΣXQ̂) s. t. Q̂⊤Q̂ = Id , (2)

where||X ||2
Σ

denotes the squaredM-norm ofX regarding any positive semi-definite
matrixΣ, such that it holds that||X ||2

Σ
= tr(X⊤ΣX). Previous formulation given by

Eq. (2) takes place, since the following expression holds [7]:||X ||2
Σ
= ||X − X̂ ||2

Σ
+

tr(Q̂⊤X⊤ΣXQ̂). Then, because||X ||2
Σ

remains constant, the aim of minimizing||X−

X̂ ||2
Σ

and that of maximizing tr(̂Q⊤X⊤ΣXQ̂) can be reached simultaneously. By
design, to incorporate the information given by the assumed similarity into the data
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projection process, we employ the kernel matrixΩ that is given as positive semidefinite
matrix, i.e.,Σ = Ω. Next, by considering the maximization problem in Eq. (2), we can
write its Lagrangian asL(Q̂,∆) = tr(X⊤ΩX)− tr(∆⊤(Q̂⊤Q̂− Id)). Then, equating
the partial derivatives in the form:∂/∂Q̂ tr(Q̂⊤X⊤ΩXQ̂) = ∂/∂Q̂ tr(∆⊤(Q̂⊤Q̂ −
Id)), we device the following dual problem:X⊤ΩXQ = Q∆, where∆ = Diag(δ),
∆ ∈ Rd×d, and vectorδ = [δ1, . . . , δd] holds the Lagrangian multipliers. Then, we
can infer that a feasible solution of this problem can be accomplished by selecting the
Lagrange multipliers as the eigenvalues, as well as, making the matrixQ̂ as the largestp
eigenvectors ofX⊤ΩX . Dimensionp can be established by means of the well-known
explained variance criterion. Finally, the output projected data can be computed asŶ =

XQ̂. Assumingŷi as thei-th row vector ofŶ , the projections are:̂E = Ω̂A+1N ⊗b
⊤,

beingΩ̂i j = K(ŷi, ŷ j). Again, a subsequent encoding process is needed to determine
the cluster assignments as explained in previous section.

4 Results and discussion

The proposed PKSC method is compared with KSC [2], kernel k-means (KKM) [4],
min cuts (Min-cuts) [10] and multi-cluster spectral clustering (MCSC) [1]. They are
performed over the same conditions: kernel matrix and number of clusters. In case of
PKSC, another aspect to take into consideration is the estimation of the valuep. Here,
we use an accumulated variance by setting am% of accumulated variance to be captured
by the p selected eigenvectors. Methods are assessed regarding image segmentation
performance as shown in Fig. 1. The segmentation performance is quantified by a
supervised index noted as Probabilistic Rand Index (PR) explained in [11], such that
PR ∈ [0, 1], being 1 when regions are properly segmented. Images are drawn from
the free access Berkeley Segmentation Data Set [8]. To represent each image as a data
matrix, we characterize the images by color spaces (RGB, YCbCr, LAbB, LUV) and
the xy position of each pixel. To run the experiment, we resize the images at 20% of
the original size due to memory usage restrictions. All the methods are performed with
a given number of clustersK manually set as shown in shown in Fig. 1 and using the
scaled exponential similarity matrix as described in [4], setting the number of neighbors
to be 9. To determinep, we setm = 95%. Also, another real databases collection is
considered that is taken from the UCI repository [9]. For quantitative evaluation of
compared clustering methods in terms of performance and stability, the estimated mean
value of considered measures are shown in Table 1, which are computed after running
algorithms 50 times. Methods are performed by setting the number of groups as the
original number of classes. Again, a scaled similarity matrix is used with the number
of neighbors equals to 15. In this case, for PKSC, dimensionp is fixed by setting
m = 99%. We use two well-known clustering measures: Fisher’s criterion (J) and
Silhouette (S ).

Proposed data projection transforms data from the originald-dimensional feature
space into a reducedp-dimensional one. However, since the cluster structure is the most
important characteristic describing the input data, the main goal of data projection is
to find a lower dimensionality representation maximally preserving the original cluster
structure. This work introduces a data projection that focuses on the analysis of the local
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Original PKSC KSC Min-cuts MCSC KKM

(a) 113044 (b) PR = 0.7601 (c) PR = 0.6992 (d) PR = 0.6906 (e) PR = 0.6882 (f) PR = 0.6555

K = 2

(g) 118035 (h) PR = 0.8628 (i) PR = 0.7858 (j) PR = 0.7786 (k) PR = 0.8096 (l) PR = 0.4479

K = 4

(m) 12003 (n) PR = 0.7608 (o) PR = 0.6901 (p) PR = 0.6485 (q) PR = 0.6823 (r) PR = 0.5452

K = 4

(s) 181091 (t) PR = 0.8740 (u) PR = 0.7992 (v) PR = 0.7078 (w) PR = 0.7700 (x) PR = 0.6125

K = 7

Fig. 1: Clustering performance on image segmentation along 10 iterations

data structure to improve the performance of KSC clustering method. Proposed scheme
improves the performance of kernel spectral clustering since, firstly, the data global
structure is taken into account in the projection process and, secondly, the kernel method
exploit the local structure information. Due to these properties, our method outperforms
the remaining considered methods in terms of the considered clustering performance
measures. As can be noticed, our method works well on image segmentation, which
means that complex data can be rightly modeled by PKSC. In addition, since global
structure is also considered, PKSC is also able to deal with real databases where some
compactness is guaranteed. Then, our approach is a more flexible and versatile method.

5 Conclusions

This paper proposes a new data projection to improve the performance of clustering,
in the concrete case, the Least-squares SVM-based Kernel Spectral Clustering is con-
sidered. Proposed data projection consists of a linear mapping based on theM-inner
product approach, for which an orthonormal eigenvector basis is computed as the pro-
jection matrix. Moreover, the used projection matrix is computed over the spectrum
of a weighted covariance matrix involving the information given by the similarity ma-
trix. The strength of our approach is that local similarities and global structure are
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Method
Data set Measure Min-cuts MCSC KKM KSC PKSC

Iris
J 2.8± 0.15 2.01± 0.1 2.7± 0.12 2.9± 0.15 3.55± 0.2
S 0.7± 0.009 0.45± 0.009 0.55± 0.01 0.65± 0.011 0.75± 0.014

Biomed
J 1.5± 0.09 0.95± 0.1 1.1± 0.11 1.1± 0.3 1.6± 0.3
S 0.60± 0.01 0.25± 0.011 0.45± 0.014 0.54± 0.09 0.65±0.09

Auto mpg
J 0.69± 0.15 0.62± 0.13 1.04± 0.22 0.80± 0.11 0.89± 0.15
S 0.35±0.009 0.30± 0.009 0.35± 0.009 0.42± 0.009 0.51± 0.009

Breast
J 0.85± 0.1 0.85± 0.12 0.85± 0.14 0.85± 0.23 1.25± 0.26
S 0.75± 0.0091 0.61± 0.01 0.78± 0.014 0.78± 0.011 0.79± 0.031

Glass
J 0.54± 0.11 0.45± 0.12 0.50± 0.18 0.53± 0.22 0.55± 0.19
S 0.61± 0.011 0.41± 0.011 0.53± 0.012 0.56± 0.023 0.61± 0.017

Diabetes
J 0.54± 0.091 0.45± 0.1 0.50± 0.11 0.54± 0.51 0.55± 0.21
S 0.61± 0.0091 0.42± 0.0092 0.55± 0.011 0.59± 0.089 0.61± 0.013

Heart
J 0.11± 0.26 0.14± 0.26 0.14± 0.3 0.15± 0.54 0.16± 0.31
S 0.32± 0.012 0.37± 0.012 0.39± 0.017 0.32± 0.056 0.42± 0.021

Table 1: Overall performance for clustering methods over real databases

employed to refine the projection procedure by preserving the most explained variance
and reaching a projected space that improves the clustering performance within the
studied framework.

As a future research, new optimal projections in terms of different clustering criteria
can be considered. New works may focus on determining optimal basis within spectral
analysis. As well, other kernels and applications can be considered.
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