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Abstract. This paper proposes a new exponential clustering algorithm (XPFCM)
by reformulating the clustering objective function with an additional parameter p to
adjust the exponential behavior for membership assignment. The clustering exper-
iments show that the proposed method assign data to the clusters better than other
fuzzy C-means (FCM) variants.

1 Introduction

Clustering is the agglomeration of objects (or samples) into clusters so that objects
within the same cluster are more similar, according to some similarity measures, while
objects from different clusters have a lower similarity. The clustering goal is maximize
the homogeneity of the objects in same cluster while maximizing the heterogeneity of
objects in different clusters [1]. Fuzzy clustering [2] provides an additional conceptual
enhancement by allowing the sample to be allocated to several clusters (classes) to
various degrees (membership values). By this, patterns can be treated more realistically
and the analysis is capable of identifying eventual outliers.

A number of methods have been proposed to improve the performance of fuzzy
clustering algorithms [3]. For example, Myamoto [4] adds a regularized term based on
a Shannon entropy [5] to guide the clustering process. This entropy regularized term
is often used as a validity clustering criteria. Recently, Kannan et al. [6] propose new
objective functions with quadratic entropy regularization and mean quadratic entropy
regularization to enhance the flexibility in obtaining clusters with more noised data.

The entropy based FCM algorithm performs well with noise-free data, it obtains a
rather poor result when having to deal with data corrupted by noise, and other artifacts,
as is often the case with real-world dataset [6]. To address this issue, we propose in this
work a new objective function with exponential behavior based on the previous work of
Treerattanapitak and Jaruskulchai [7]. The exponential function has a quite aggressive
attribution of pertinence degrees. In this work, we have an additional parameter ”p” that
multiplies the pertinence degree, that controls the influence of the exponential function
to the award of the pertinence degree. Thus, we expect that for different values of
these parameters, the objective function can escape from local minima. Furthermore,
in this work we have used the Karush-Kuhn-Tucker (KKT) optimization, which avoids
pertinence degree with negative values. With experiments on synthetic and real data
sets, we have verified that our proposed method has obtained better performance than
other clustering algorithms.
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583

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.



The paper is organized as follows. In Section 2, we present the new exponential
fuzzy clustering. In Section 3, we perform experiments to validate our proposed algo-
rithm against other clustering algorithms. In Section 5, we draw a conclusion and make
recommendations for the future work.

2 An adjustable p-exponential fuzzy clustering (XPFCM)

The idea consists of developing a clustering algorithm that handles an aggressive mem-
bership degree attribution using an exponential function. The behavior of the proposed
objective function is to force a high value of a membership degree uik in matrix U be
associated with a low value of a distance dik to a cluster prototype vk from matrix V ,
where (i = 1, . . . , n; k = 1, . . . , C), n is the number of items xi, C is the number of
clusters and dik = (xi − vk)T (xi − vk) is the Euclidean distance. In this situation,
the objective function is optimized in a exponentially, only if the distance dik is low.
However, the exponential performance is controlled by two parameters m and p. The
parameter m is raised by the membership degree uik, multiplied by another parameter
p. The parameter p will decreasing or increasing the uik exponentiation. Thus, the
proposed objective function of the XPFCM algorithm is:

JXPFCM (U,V) =
C∑

k=1

n∑
i=1

(mp∗uik − 1)d2(xi, vk) (1)

(2)

where the parameter p > 0 adjusts the exponent of the exponential function. The
membership degree functions are subject to the constraints

uik ≥ 0 for i = 1, ..., n; k = 1, ..., C (3)
C∑

k=1

uik = 1 for i = 1, ..., n

The minimization of equation (1) can be performed by Lagrange equationLXPFCM :

LXPFCM (U,V) =
C∑

k=1

n∑
i=1

(mp∗uik − 1)d2(xi, vk) (4)

−
∑
i

λi

(∑
k

uik−1

)
−
∑
i

∑
k

ψikuik

whereλi and ψik are known as Lagrange multipliers. Using objective function (4) and
the constraints (3) of the original minimization problem, we can write down the corre-
sponding Karush-Kuhn-Tucker conditions:

ψik ≥ 0 (5)
∂LXPFCM

∂uik
= 0 (6)

uikψik = 0 (7)
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Considering the conditions (5)(6)(7), the relation can take one of two forms for each
object xi
1. ψik = 0 for k = 1, ..., C so that

uik =

1
C ∗

(
p ∗ log(m)− C ∗ log(dik) +

∑C
l=1 log(dil)

)
p ∗ log(m)

(8)

and it is valid only if uik ≥ 0 for all objects. If this condition is not fulfilled, we
have to consider the alternative form:
2. ψ > 0 for at least some k. Because Eq. (3) must also be satisfied, it is clear that this
solution is not valid to all k of one object i. Hence let us define the partition:

V− = {uik = 0}
V+ = {uik > 0⇒ ψik = 0} ̸= ∅ (9)

To compute partition V− we take in consideration the constraint (3), resulting in
ψ = 0. Beside, if k ∈ V+, we have an equation analogous to the equation (8).

To compute the centroid, the resulting equation is

vk =

∑n
i=1(m

p∗uik − 1)xi∑n
i=1(m

p∗uik − 1)
(10)

Now we can formulating the algorithm as follow:
SCHEMA OF THE XPFCM CLUSTERING ALGORITHM

1. Initialization

a. Fix the number C of clusters; Fix MaxIter (maximum number of iterations);
Fix ϵ >> 0; Fix s = 0 (iteration count)

b. Randomly select C distinct prototypes v(0)k ∈ X = x1, x2, . . . , xN (k = 1, . . . , C);

c. Compute the membership degrees:
u
(0)
i = (u

(0)
i1 , . . . , u

(0)
iC )(i = 1, . . . , N)

with

u
(0)
ik =

[∑C
l=1

(
(d

(0)
ik )2

(d
(0)
il )2

)]−1

Repeat :
2. Representation step:

Compute the prototypes vk(k = 1, . . . , C) using equation (10)
3. Allocation step:

Compute the fuzzy membership degree uik of data point xi(i = 1, . . . , n)
into cluster vk (k = 1, . . . , C) using equation (8)
If uik <= 0⇒ V− = V − ∪ vk ⇒ uik = 0
If uik > 0⇒ V+ = V + ∪ vk ⇒ uik = uik

Until |Us+1 − Us| ≤ ϵ or s > MaxIter

585

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7. 
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.



3 Experiments

To evaluate the new clustering algorithm we have performed clustering tasks in real and
synthetic data sets. The real data sets are Iris and Ionosphere from UCI repository.

The iris data set contains 150 samples describing 3 types of iris plants. There are
4 attributes describing the length and width measures of petals and sepals of the plant.
There are 50 samples to represent each plant.

The Ionosphere data set analysis the quality of a radar returns from ionosphere. The
targets were free electrons in the ionosphere. ”Good” radar returns are those showing
evidence of some type of structure in the ionosphere. ”Bad” returns are those that do
not, their signals pass through the ionosphere. The data set consists of 351 instances
described by 34 real-valued attributes, being 225 instances of good returns and 126
instances of bad radar returns.

The synthetic data set Cassini can be generated using the mlbench library in R lan-
guage. The inputs are uniformly distributed on a 2-dimensional space within 3 struc-
tures. The 2 external structures (classes) are banana-shaped structures and in between
them, the middle structure (class) is a circle. There are 500 total examples, being 200
from class 1 and 2 and 100 from class 3.

The result of the clustering algorithms in this work are a fuzzy partition into C
fuzzy clusters. Then, a hard hard partition R = (R1, . . . , RC) is obtained from this
fuzzy partition by defining the cluster Rk(k = 1, . . . , C) as: Rk : {xi ∈ X : uik ≥
uim,m ∈ {1, . . . , C} and m ̸= k}. So, each example is associated to that cluster
whose the membership degree is the greatest. So that, we create the final hard partition
which contain all examples associated to one cluster.

To compare the clustering results furnished by the clustering methods, an external
index - the corrected Rand index (CR) [8] - and the overall error rate of classification
(OERC) [9] will be considered.

The purpose of the experiment applied in this work is evaluate the proposed clus-
tering algorithm against other algorithms with similar characteristics, like the Fuzzy
C-Means (FCM) proposed by Bezdek [2], and the exponential algorithm (XFCM) pro-
posed by Treerattanapitak and Jaruskulchai [7].

In this experiment, we have ranged the parameter settings of each algorithm in order
to get the best clustering acccuracy. For the algorithms FCM, XFCM and XPFCM we
have ranged the fuzzifier value of m from 1.5 to 5, including the euler exponential
number e = 2.71 . . .. The XPFCM algorithm have an additional parameter p that
was ranged from 0.5 to 5, including e, for each value of m. We have performed 100
iterations with different centroid initializations. The selected iteration result is that
whose objective function value is the lowest. We have performed experiments with k
equal to the number of priori classes to each data set.

4 Results

This sections presents the results for the clustering algorithms in a clustering task. The
tables present the CR and OERC results for the algorithms Fuzzy C-Means (FCM),
exponential algorithm (XFCM), and the proposed algorithm (XPFCM). The fuzzifier
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parameter m was ranged for all algorithms. For XPFCM algorithm, we show for each
m configuration, the p value obtained by the lowest value of the objective function of
the XPFCM algorithm.

Table 1 presents the results obtained for the synthetic Cassini data set. We can
observe that variation of parameter m is not significant for the FCM algorithm. The
exponential algorithms has obtained better performances. The XFCM obtained better
performance with m = 1.5, and the XPFCM has obtained the best overall performance
with m = 2 and p = 1.5. The performance of the proposed algorithm was better than
other clustering algorithms.

m m=1.5 m=2 m=2.5 m=e m=3 m=3.5 m=4 m=4.5 m=5
FCM OERC 13.33 13.33 13.33 13.33 13.33 13.33 13.33 13.33 13.33

CR 0.534 0.534 0.532 0.53 0.529 0.529 0.528 0.528 0.528
XFCM OERC 5.33 5.6 10.8 11.47 11.07 13.33 13.33 13.33 13.33

CR 0.817 0.804 0.677 0.664 0.671 0.533 0.533 0.534 0.534
p p=2.5 p=1.5 p=1.5 p=1 p=1 p=1 p=1 p=1 p=0.5

XPFCM OERC 0.933 0.8 1.33 0.93 1.2 1.47 1.6 2.67 2.27
CR 0.964 0.969 0.949 0.964 0.954 0.944 0.94 0.902 0.915

Table 1: Performance of the algorithms in Cassini dataset

The results for Iris data set are presented in Table 2. The variation of the m pa-
rameter does not change the performance of the XFCM algorithm. The performance of
the FCM algorithm is better for m ≥ 4.0. The best performance was obtained by the
proposed algorithm for two configurations of the experiment.

m m=1.5 m=2 m=2.5 m=e m=3 m=3.5 m=4 m=4.5 m=5
FCM OERC 7.11 7.11 7.11 7.11 7.11 7.11 6.67 6.67 6.67

CR 0.73 0.73 0.73 0.716 0.729 0.729 0.743 0.743 0.743
XFCM OERC 7.11 7.11 7.11 7.11 7.11 7.11 7.11 7.11 7.11

CR 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73
p p=4.5 p=3 p=2 p=2 p=1.5 p=1.5 p=1.5 p=1 p=1

XPFCM OERC 4.44 6.22 4.44 5.78 6.22 5.33 6.22 6.22 6.67
CR 0.815 0.753 0.815 0.768 0.749 0.783 0.753 0.749 0.734

Table 2: Performance of the algorithms in Iris dataset

The results for Ionosphere data set are presented in Table 3. The performance of the
FCM algorithm decreased to m ≥ 4. The performance of the XFCM algorithm is not
influenced by the m parameter. The proposed algorithm has obtained the better overall
performance for m = 5 and p = e.

m m=1.5 m=2 m=2.5 m=e m=3 m=3.5 m=4 m=4.5 m=5
FCM OERC 29.06 29.06 29.06 29.06 29.06 29.06 29.63 29.63 29.63

CR 0.173 0.173 0.173 0.173 0.173 0.173 0.163 0.163 0.163
XFCM OERC 29.63 29.63 29.63 29.63 29.63 29.63 29.63 29.63 29.63

CR 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163
p=2 p=e p=e p=e p=4 p=2.5 p=0.5 p=0.5 p=e

XPFCM OERC 28.77 21.94 21.65 23.93 29.04 29.06 29.06 28.77 20.51
CR 0.177 0.311 0.317 0.268 0.173 0.172 0.173 0.178 0.343

Table 3: Performance of the algorithms in Ionosphere dataset
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As observed in the experiments, the parameters have influenced the clustering algo-
rithms performance. The proposed algorithm is very influenced by the parameters m
and p. However, the variation of these parameters, allows the algorithm to obtain better
performance with notable difference compared to the evaluated algorithms.

5 Conclusion

The main contribution of this paper is a reformulated exponential clustering algorithm
by adding an adjustable parameter p, and optimizing the objective function with the
KKT conditions. The p parameter allows an adjustment in the aggressive exponential
behavior of the algorithm, while the kkt optimization avoid negative pertinence degrees.
As we can observe by the experiments, the additional parameter p, and the utilization
of the KKT optimization in the proposed XPFCM algorithm, gives a performance ad-
vantage in clustering task regarding the evaluated algorithms. For future, we pretend
study the behavior of the m and p parameters to propose a method aiming an optimal
objective function optimization.
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