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Abstract. Nonlinear dimensionality reduction (NLDR) techniques offer
powerful data visualization schemes capturing nonlinear effects of the data
at the costs of a decreased interpretability of the projection: Unlike for
linear counterparts such as principal component analysis, the relevance of
the original feature dimensions for the NLDR projection is not clear. In
this contribution we propose relevance learning schemes for NLDR, which
enable to judge the relevance of a feature dimension for the projection.
This technique can be extended to a metric learning scheme which opens
a way to imprint the information as provided by a given visualization on
the data representation in the original feature space.

1 Introduction

Nonlinear dimensionality reduction (NLDR) has been pioneered in approaches
such as Isomap, locally linear embedding, t-distributed stochastic neighbor em-
bedding (t-SNE), or neighbor retrieval visualizer (NeRV), to name just a few
popular techniques [8, 14, 16, 2]. Unlike linear counterparts such as principal
component analysis (PCA), nonparametric projection schemes are capable of a
reliable representation of dominant structural elements such as cluster formation.
Still practitioners often prefer linear techniques over more flexible nonparametric
methods, one of the reasons being their direct interpretability: for linear tech-
niques, the relation between the original feature dimensions and the projections
is explicit and the relevance of features for the visualization can be quantified
by the size of the parameters in the linear mapping. In contrast, the original
features are hidden in a NLDR projection and their relevance is not clear.

In this contribution, we propose relevance learning schemes for NLDR, pro-
jections which enhance a given visualization by a ranking scheme indicating the
relevance of the input features for the data projection. This approach is in
line with recent techniques to enhance machine learning models by interpretable
components [15, 9, 12]. Note that there exist approaches which simultaneously
perform data analysis and feature selection [6, 10], but they cannot be utilized
for giving insight into existing NLDR methods such as t-SNE. These methods are
typically fully unsupervised. Conversely, there exist purely supervised feature se-
lection techniques for classification [3]. In contrast, our proposal rather acts like
a wrapper approach to add interpretable components to existing NLDR, meth-
ods. We investigate two methods for relevance determination: on the one hand,
we apply feature selection techniques to quality evaluation measures for NLDR
as proposed in [7]. This enables a reliable ranking of the feature dimensions. On
the other hand, based on a smooth quality evaluation for NLDR as proposed in
[16], we develop a metric adaptation scheme which adjusts relevance terms in
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the original feature space. Besides resulting in a similar qualitative ranking, this
enables an explicit quantitative estimation of the feature relevance and a corre-
sponding change of the feature representation in the original space as imprinted
by the given visualization. Thus, this offers a first step towards techniques to
interactively change the data representation based on a given data visualization.

2 Dimensionality Reduction

Dimensionality reduction (DR) maps data points X = {#* € R"|i = 1...N}
to projections Y = {¢* € R?|i = 1...N} such that as much structure as
possible is preserved. Techniques differ in the way how this is formalized, see
e.g. [2] for a unifying presentation of popular DR schemes. Linear methods such
as PCA offer an explicit mapping 4" = WZ* while many NLDR schemes are
nonparametric. We will exemplarily consider t-SNE [14] which, as an objective,
optimizes the Kullback Leibler divergence of probabilities as induced by data
pairs in the original space and the visualization space, respectively. We will also
consider an extension of t-SNE to a discriminative DR method, Fisher t-SNE
(F-t-SNE)[5]. For the latter, data are labeled, and the euclidean metric for X is
exchanged by the Fisher metric to account for the auxiliary class information.
Since DR is essentially unsupervised it is not clear how to quantitatively
evaluate a given data visualization. The co-ranking framework as proposed in [7]
offers a very popular evaluation scheme in dependence of a given neighborhood
range k: given k, it evaluates the average overlap of neighborhoods of size k in
the projection space and the original data space, i.e. it measures the quality

Qr(X,Y) = (Nk(@) N Nk (")) /(NE)

%

where Ny (7%) (resp. Nk (%)) are the indices of the k closest points of # in the
data space (resp. projection space). Interestingly, the quality summarizes various
popular alternative evaluation measures [7]. A principled alternative has been
proposed in [16] based on an information retrieval model, which contains the
quality as one special case. It also introduces a smooth extension

e Pjli qili
lej RV(va) = 'yzzpﬂibgl +(1- ’y)Zqu‘ilog i
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with weighting v € [0, 1], d referring to the distance in the data space X, and
the standard deviation chosen such that the actual number of neighbors is k.!
These costs have been used in [16] as objective for the NLDR technique NeRV.

'In [16], the standard deviations o} and O'E/ are the same. For our purposes, we will consider
a varying neighborhood size.
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3 Relevance Learning for DR

Note that NLDR techniques such as t-SNE provide a nonparametric mapping
¥ to §* for which an interpretation is not clear. In particular, it is not clear
how relevant a given feature z} is for the mapping. We are interested in ways to
enhance NLDR by a relevance weighting for the features I € {1,...,n} of X.

Evaluation functions for NLDR allows us to directly transfer classical feature
selection techniques [3]: we can apply one forward or backward selection step
regarding one feature for these evaluation functions. This yields our first two
relevance determination techniques. Assume a NLDR X — Y is given.

o )\ (1) := Qx(X|1,Y) where X|; considers only feature [, i.e. the points

forward
(xj) € R. This induces an ascending relevance ranking of the features.

k — : i i i i
o Nowardl) == Qr(X|-,Y) where points (z3,...,2}_4, Ty, ,xh) €
R™~! are considered. This induces a relevance ranking in descending order.

These measures yield a qualitative evaluation of the relevance. For quantitative
measures, we consider the smooth quality QEERV. The idea is to change the
metric in X such that it takes into account the relevance of the dimension I:
d(@,#)* = Y, (xj — 27)® becomes Y, A} (2] — 27)?. This corresponds to a
feature transformation X, = {(Aa?,..., A\pzh) | i} of X. We are interested
in relevance terms A such that the transformed feature space X is as close as
possible to the projection Y as measured by quality evaluation measures:

o Mory (D) := A? where A optimizes QF %V (X,,Y) + 8>, A7

0 > 0 weights the sparsity constraint. To compute )\{QeR\,(Z), we optimize the
objective L1 regularized quality QYR (X, Y) +6 Y. A7 with respect to A\?. We
use a gradient technique similar to well known algorithms from neural network
optimization [11]. Strictly speaking, the result is not necessarily unique due to
possible local optima; in practice, we did not observe problems.
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Fig. 1: Left: Data setl. Right: Relevance profile of the Adrenal data set. Green
marks indicate that these 9 dimensions are also the top ones in [1].

167



ESANN 2014 proceedings, European Symposium on Atrtificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

4 Experiments

All relevance measures yield a ranking of the dimensions according to their rel-
evance for the visualization at hand, but only Anery can also be employed as a
metric for the original data. In the following, we i) demonstrate how the meth-
ods work for a simple toy scenario, ii) we compare the rankings of the dimensions
qualitatively for different projection types and iii) we show that the metric in-
duced by )\{QeRv improves the similarity of the original and projected data. We
also compare one of our relevance profiles to one from the literature and observe
a large accordance. In all experiments we set v = 0.5 and § = 1.

Proof of Concept: Data set! contains three clusters with 20 points each in
three dimensions, see Fig. 1. The third dimensions does not contain cluster in-
formation. A t-SNE projection yields well-separated clusters in two dimensions.

The relevance profiles A are shown in Fig. 2 for varying k. The ranking of
the dimensions induced by A is identical for all techniques. Anery mirrors the
irrelevance of dimension 3 as soon as the neighborhood exceeds the cluster size.
Locally, all dimensions carry information because of the isotropic cluster shapes.

While the baseline for irrelevant dimensions for Anery is zero, the baseline
for Aforward 18 given by the diagonal, and the baseline for Apackwarda depends on
the data and is given by the quality of the projection. As can be seen from Fig.
2 (middle and right) also the forward and backward relevance selection meth-
ods clearly mark dimension 3 as unimportant. Unlike Anerv, these relevance
schemes do not indicate the local importance of all dimensions.

Qualitative comparison for different mapping characteristics: We com-
pare the relevance ranks induced by the three schemes using different data and
projection characteristics: Data set2 contains three two-dimensional Gaussians
arranged above each other along dimension 3. Although this dimension has small
variance, it is relevant for cluster separation. Correspondingly, PCA and t-SNE
lead to different map characteristics PCA ignoring dimension 3 while t-SNE em-
phasizes it. Data set3 consists of ten features with three classes in the first two
dimensions. The other dimensions contain increasingly noisy copies. Projections
of PCA, t-SNE and F-t-SNE look similar here, with F-t-SNE better emphasizing
the cluster structure which is mostly apparent in the first two dimensions.

We report the feature ranking of the most relevant features for different
neighborhood sizes k (medium =0.8 - cluster size, large =1.2 - cluster size) in
Table 1. The rankings induced by the different techniques coincide in most
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Fig. 2: Relevance determination for data setl using Anerv (left), Aforwara (mid-
dle) and Apackward (right).
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Table 1: Feature ranking induced by the different techniques for set2 and set3

[[ neighb. [ medium | TJarge [ medium [ TJarge | medium | large [l

set2 ANeRV Aforward Abackward

PCA L2>3] 1L,)>3 | L2)>3] (L2)>3] L2)>3 | (L,2)>3
t-SNE 3>(1,2) | 3>7(1,2) |3>1,2) |3>1,2) | 31,2 | 3>@1,2)
set3 ANeRV Aforward Abackward

PCA 35251 (23)>1 (153521535225 (13,4 ] 2> (1,3,4)
t-SNE || 1>2>9|1>2>9|1>23) | 1>(23) | 2>9>3 | 2>(1,3,9)
FtSNE [[1>2>3 | 1>2>3 | 1>(23) | 1>(2,3) | 2>(1,3,4) | 2>(1,3,4)

settings and clearly indicate dimensions which one expect as relevant for the
data set and projection as such, with a few notable exceptions: For set3 high
redundancy is present. This causes a clearer emphasize of dimensions 1 and
2 for F-t-SNE. Further, this redundancy cannot be accounted for by forward
or backward selection, while Anery, optimizing simultaneously for all features,
breaks ties in favor of the less noisy features 1 and 2.

Suitability of induced feature transformation: Finally, we demonstrate
the suitability of the metric induced by Anery to imprint the information of the
projection Y to X. We evaluate this property by a comparison of the nearest
neighbor (NN) error of the data in the projection space and the original data
space X or its transformation, respectively. Thereby, we learn Anery based on
a Fisher t-SNE mapping which also takes the available label information into
account. We expect that the NN error improves in the latter setting for the
transformed representation X of X. Further, we expect that the classification
is also improved if standard t-SNE is applied to the data X.

We use two data sets: The USPS data set [4] contains images of size 16 x 16
of the handwritten digits 0 to 9 where we randomly select 200 images per class.
The Adrenal data set [1] contains 147 patients characterized by 32 features. The
data describe two different kinds of adrenal tumors.

The results using Anerv, which is learned on the F-t-SNE mapping, are re-
ported in Table 2. The classification error reduces, if X is projected to two
dimensions using t-SNE because of the elimination of noise, and even more so if
F-t-SNE is used, i.e. the class information directs what is considered as noise. In-
terestingly, the classification improves when transforming the data according to
the learned relevance from Anegry, albeit only a linear transformation of the data
takes place this way. This behavior is also preserved if a standard t-SNE projec-
tion is used on top of the feature transformation. Hence the results substantiate
the possibility to change the data representation based on visual information
this way, albeit the method is still limited to a global linear weighting.

For the Adrenal data, we compare the relevance profile Axery With relevances
from [1], obtained differently. Interestingly, there is a large overlap of these two
results as shown in Fig. 1. Unlike [1] we can obtain this profile in one run of the
algorithm making repetitions and thresholding as used in [1] superfluous.

Table 2: 1-NN errors in various data spaces of the data sets USPS and Adrenal.

[[ neighb. | | medium | Targe [ medium | large ]
data sets X t-SNE(X) | F-t-SNE(X) X t-SNE (X))
USPS 7.3% 6.7% 0.0% 2.2% 2.7% 3.1% 3.5%
Adrenal 10.9% 8.8% 0.7% 7.5% 6.8% 7.5% 6.8%
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5 Discussion

We have presented relevance determination schemes for dimensionality reduc-
tion, thus offering a first step to shed some light on the interpretability of a
given nonparametric data visualization. Interestingly, one technique also yields
an explicit feature transformation such that it opens the way towards an inter-
active data transformation based on a visualization of a given data set only.

So far, feature ranking is global and we have restricted the learned met-
rics to a global diagonal form. Extensions to local schemes and more powerful
quadratic forms are the subject of ongoing work. Further, improvements of the
computational complexity using techniques as presented in [17, 13] are possible.
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