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Abstract. DRASiW is an extension of the WiSARD weightless neural
model that provides the ability of producing examples/prototypes, called
“mental images”, from learnt categories. This work introduces a novel way
of performing rule extraction by applying the WiSARD/DRASiW RAM-
based neural model upon a well-known machine learning benchmark. A
functional exploration is offered in order to demonstrate how the new
rule extraction mechanism behaves under different system configurations.
Experimental results suggest that the rules conformance to data increases
proportionally to the corresponding classifier accuracy. Furthermore, com-
parison with C4.5 decision tree algorithm shows that the DRASiW-based
technique produces more compact sets of rules.

1 Introduction

DRASiW [1] [2] is an extension to the WiSARD weightless neural model ca-
pable of producing approximated examples of learnt categories, the so-called
“mental images”. This work introduces a novel way of performing rule extrac-
tion (production rules) from “mental images” produced by a WiSARD/DRASiW
multidiscriminator trained with the Iris machine learning dataset [3, 4]. In order
to demonstrate how the proposed rule extraction mechanism works, the system
is stressed under different configurations. The remainder of the text is organised
in the following manner. Background knowledge on WiSARD, DRASiW and
bleaching is briefly reviewed in Section 2. The explanation of how rules can be
extracted by the use of DRASiW is presented in Section 3. Section 4 provides
experiments with a well-known benchmark and a detailed analysis in order to
demonstrate the capabilities of DRASiW. Finally, in Section 5 some concluding
points are drawn and some further research challenges are presented.

2 WiSARD and Bleaching

WiSARD (Wilkie, Stonham and Aleksander’s Recognition Device) [5] is both
a weightless neural network and an n-tuple classifier, i.e., its input is an array of
bits. The basic structure of its architecture is a RAM (random access memory)
discriminator. Each of these structures is assigned to a particular category,
therefore a WiSARD network possesses as many discriminators as the number
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of categories it should be able to distinguish. WiSARD can be thus called a
multidiscriminator architecture. Figure 1a depicts this architecture.

The discriminators are composed by RAM nodes, which store the informa-
tion learnt by the network. Every node is addressed by an array of bits which is
formed by concatenating particular bits, shuffled from the network input accord-
ing to a pseudo-random mapping. This procedure is demonstrated in Figure 1b.
The generalising capability of WiSARD highly depends on the size of the in-
puts of the RAM nodes in its discriminators. The smaller their input size more
generalising is the network.

(a) Multidiscriminator architecture
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(b) Pseudomapping procedure

Fig. 1: WiSARD architecture

WiSARD training procedure consists in initially setting every memory posi-
tion to “0”, and then, for every input pattern (input, category) (i, c) presented to
the network, set to “1” the position addressed by this pattern. The classification
procedure consists of retrieving the information stored in the memory positions
by addressing every RAM node of every discriminator. The nodes then output
the information stored in their addressed position and, finally, the discrimina-
tors output a similarity measure whose value is the sum of the responses of their
RAM nodes, i.e., the number of addressed positions which were accessed during
the training phase. The chosen category is the one assigned to the discriminator
with the highest response.

WiSARD is an overtraining-prone n-tuple classifier, since if a large amount of
patterns is trained, especially noisy ones, many memory positions are set to “1”
and then, the network gets “saturated”, i.e., ties would happen often given that,
upon testing a target pattern, the vast majority of RAM nodes would output “1”
and thus two or more discriminators would output the highest possible response.
DRASiW is an extension to WiSARD that takes profit from the way WiSARD is
trained. Instead of having memory positions simply set to “1” if accessed under
training (“0” otherwise), every memory position stores the amount of times it
was accessed during the training phase. Thus it allows one to check what a
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WiSARD discriminator has learnt by reconstructing an image from the different
memory positions writing frequencies, the so called “mental images”.

A tie-breaking technique, called “bleaching”, was derived from the idea of
DRASiW’s “mental images”. This technique uses a threshold b, initially set to
0, which is used during the classification phase: each RAM node, instead of
output “1” if it were accessed and “0” otherwise, it would output “1” if it were
accessed more than b times and “0” otherwise. Furthermore, if a classification
procedure ends in a tie, the value of b should be incremented by a constant k;
the procedure should be done again until the tie is broken [6].

3 Rule extraction

By using the DRASiW extension, WiSARD is capable of storing integer numbers
in its memory positions instead of only “0” and “1”. This way, it is possible to
compare informally equivalent memory positions. Two memory positions p1 and
p2 are informally said to be equivalent if they have the same input address and
if their RAM nodes r1 and r2 belong to different discriminators but their input
address lines (IALs – number of RAM address input bits) are composed from
the same indices of the network input array. For example, the input address
marked position of the first RAM node (from top to bottom) of Figure 1b is
“11” and its IALs are composed by bits 8 and 7 of the network input. For
another discriminator containing a RAM node whose IALs would be composed
by the aforementioned bits, the position of this RAM which were addressed by
“11” would be an equivalent memory position to the one initially mentioned.

Equivalent memory positions can indicate if there are features that can be
used to distinguish between categories, because they are frequent or in some cases
exclusive to a category. Such features appear as high values on certain RAM
positions of the discriminator assigned to the category for which the feature
is frequent or exclusive, i.e., it was accessed several times during the training
phase, and as low values on the equivalent memory positions on the remaining
discriminators. Mapping back the memory positions to the network input array
reveals which data is related for these features, although some features may also
be a consequence of noise in the database. Algorithm 1 is used for the attribute
selection (lines 6-14) and rule extraction (lines 15-19).

This procedure differs from C4.5 algorithm [7], a more traditional approach
to rule induction, which collects the rules first and then applies pruning to avoid
overfitting. By using DRASiW, the pruning is done before, using the bleaching
method. This simplifies the following task, as there are less noise to induce from.

4 Experiments

4.1 Dataset and preprocessing

The dataset used to demonstrate the ability to extract rules from a WiSARD
network, by using the DRASiW extension, is the well-known Iris benchmark [3,
4]. It contains 3 categories (I. setosa, I. versicolor and I. virginica). The base
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Algorithm 1 Rule extraction algorithm.

1: uncovered classes← all classes
2: uncovered ial input← get ial combinations(ial, ram inputs)
3: rules root← new tree()
4: rule← @rules root
5: while ( uncovered classes not empty) do
6: if ( uncovered ial input.end() ) then
7: if ( no new rule generated in this epoch ) then break end if
8: (ial, input)← uncovered ial input.first()
9: else

10: (ial, input)← uncovered ial input.next()
11: end if
12: equiv positions← get equiv positions(ial, input)
13: new equiv positions← remove positions if class not in list(equiv positions, uncovered classes)
14: if ( get entropy(new equiv positions) < threshold ) then
15: for ( i from 1 to max position.ial.length ) do
16: rule i← new rule(get attribute(ial i))
17: rule i.separating value← get separating value(ial i)
18: rule.inequality← ( “>” if input i = 1 else “≤” )
19: rule.and(rule i)
20: end for
21: max position← get position by value(max(value in equiv positions))
22: rule.child yes← get class(get discriminator(max position))
23: uncovered classes.remove(get class(get discriminator(max position)))
24: uncovered ial input.remove(ial, input)
25: if ( uncovered classes.length = 1 ) then
26: rule.child no← uncovered classes.first()
27: uncovered classes.remove(uncovered classes.first())
28: else
29: rule.child no← new rule()
30: rule← @rule.child no
31: end if
32: end if
33: end while

has 50 observations of each category, totalling 150 observations. A 10-fold cross-
validation procedure was done in the search of the best network configuration.

Each observation of the dataset is composed of four arguments (real num-
bers): sepal length, sepal width, petal length and petal width. As these param-
eters are not Boolean, an encoding is needed in order to transform each of these
into a bit array. An unary coding, also known as thermometer code, is used to
encode these arguments. This coding consists in selecting both the minimum
and the maximum value of a parameter and splitting this interval into k blocks
of equal size, k being a value to be calibrated.

4.2 Network configuration

In order to be able to extract rules from a WiSARD network, it must be capable
of classifying correctly and, therefore, have a high mean accuracy. Thus, some
WiSARD configurations are tested using a hill climbing methodology. The pa-
rameters to be determined are the “number of bits per feature” and the “size
of the RAM input”. After the tests being performed, two candidates for best
configuration were found, as can be seen in Table 1: (i ) 5 bits per feature and
RAMs with 1 bit in their input, which proved to be the most accurate network,
and (ii ) 3 bits per feature and RAMs with 1 bit in their input, which was almost
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as accurate as the previous configuration, but with a quite simpler architecture.
Thus, the latter configuration was the one chosen for this work.

Table 1: Accuracy rate with distinct configurations (optimal one marked in
bold)

# bits per feature #IALs Mean accuracy Standard deviation
1 1 0.340 0.128
2 1 0.713 0.055
3 1 0.960 0.047
4 1 0.867 0.077
5 1 0.973 0.034
6 1 0.960 0.084
3 2 0.720 0.177
3 3 0.713 0.218

4.3 Rules extraction

To prove the correlation between the WiSARD network accuracy in the given
machine learning task and the quality of the rules that can be inferred from the
information stored in its RAM nodes, the rules extracted this way are applied
to the whole dataset to verify how well they represent the data.

Table 2: Arguments and their extreme values in the optimal configuration

Argument Minimum Maximum Step
Sepal length (S.L.) 4.3 7.9 1.20
Sepal width (S.W.) 2.0 4.4 0.80
Petal length (P.L.) 1.0 6.9 1.97
Petal width (P.W.) 0.1 2.5 0.80

The optimal configuration produced a minimal set of rules that are depicted
as a tree in Figure 2a. This set of rules correctly represented 96% of the database.
This setup uses RAMs with only one IAL and 3 bits per feature, which lead to
a thermometer encoding according to the values of Table 2. For the sake of
comparison and for a more illustrative depiction of how the tree works, the
“mental images” of all Iris species are shown in Figure 2b.

P.W. ≤ 0.9

I. setosa
P.W. > 1.7

I. virginica I. versicolor

YES NO

YES NO

(a) Rule tree extracted

S.L.

S.W.

P.L.

P.W.

Iris setosa Iris versicolor Iris virginica

(b) “Mental images”

Fig. 2: Tree generated by DRASiW-based model and its “mental images”

At last, the rule extraction procedure is compared with a C4.5 decision tree
algorithm [7], which produced the rules depicted in Figure 3. Both models
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performed equivalently, correctly classifying 96% of the dataset. Nonetheless,
the rules produced by the DRASiW-based technique proved to be more compact.

Petal width
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Fig. 3: Tree generated by C4.5 algorithm

5 Conclusions

It is possible to extract rules from a WiSARD neural network by means of
DRASiW’s “mental images”. Experimental analysis showed that a simple net-
work can derive a concise set of production rules. Moreover, these rules tend to
be more compact than the ones obtained with the traditional C4.5 algorithm for
decision trees. Finally, the use of a RAM-based model seems to be adequate in
many other interesting scenarios, especially the ones involving limited computing
resources, given its implementation easiness.

The use of the rule extraction procedure in problems which already use both
DRASiW and the bleaching technique is left for further research. This kind of
exploration is planned for problems in which some rules are already known [8]
and in those that there are only a small set of known rules [9]. Furthermore, the
analysis of the RAM-node content and the rules induced from it could help on
the discovering of how encoding affects learning and how to optimize it.
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