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Abstract. Dimensionality reduction is a key stage for both the design of a pat-
tern recognition system or data visualization. Recently, there has been a increas-
ing interest in those methods aimed at preserving the data topology. Among them,
Laplacian eigenmaps (LE) and stochastic neighbour embedding (SNE) are the most
representative. In this work, we present a brief comparative among very recent
methods being alternatives to LE and SNE. Comparisons are done mainly on two
aspects: algorithm implementation, and complexity. Also, relations between meth-
ods are depicted. The goal of this work is providing researches on this field with
some discussion as well as criteria decision to choose a method according to the
user’s needs and/or keeping a good trade-off between performance and required
processing time.

1 Introduction

Dimensionality reduction (DR) allows the extraction of lower dimensional, relevant
information from big collections of data aimed at improving the performance of a pat-
tern recognition system or allowing for intelligible data visualization. In other words,
the goal of dimensionality reduction is to embed a high dimensional data matrixY =

[yi]1≤i≤N , such thatyi ∈ R
D into a low-dimensional, latent data matrixX = [xi]1≤i≤N ,

beingxi ∈ R
d, whered < D. Classical DR approaches were conceived follow-

ing an intuitive criterion, such as variance preservation (principal component analy-
sis - PCA) or distance preservation (classical multidimensional scaling - CMDS) [1].
Nowadays, more developed, recent methods are aimed at preserving the data topology.
Such a topology is very often given by a data-related graph, built as a non-directed and
weighted one, in which data points represent the nodes, and a non-negative similarity
(also affinity) matrix holds the pairwise edge weights. This representation is exploited
by both spectral and divergence-based methods. On one hand, for spectral approaches,
similarity matrix can represent the weighting factor for pairwise distances as happens
in Laplacian eigenmaps [2]. On the other hand, once normalized, it can also represent a
probability distribution. The latter is the case of the methods based on divergences such
as stochastic neighbour embedding [3].

This work presents a brief comparative overview of recent, dimensionality reduc-
tion methods emerging as alternatives to Laplacian eigenmaps and stochastic neighbour
embedding. Among them, locally linear landmarks for manifold learning [4], elastic
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embedding [5] and methods based on mixtures of divergences [6,7]. Comparative anal-
ysis is done mainly on two aspects: algorithm implementation, and complexity. As
well, relations between methods are depicted. This work is gathers some criteria and
discussion on how to choose among methods according to the user’s needs, and/or the
trade-off between performance and required processing time.

The rest of this paper is organized as follows: Sections 2 and 3 outline the studied
methods. The comparative analysis is presented in section 4. Finally, section 5 draws
the discussion and final remarks.

2 Spectral methods

A popular spectral approach for DR is Laplacian Eigenmaps (LE) introduced in [2],
which is aimed at minimizing local distances. The LE’s cost function can be written as∑N

n,m=1 wnm‖xn − xm‖, whereW = [wnm]1≤n≤N is the similarity matrix and|| · || stands
for Euclidean distance. Alternatively, we can express LE’s formulation as

ELE(X) = tr(XLX⊤) s. t. XDX⊤
= Id, XD1N = 0d, (1)

whereD = Diag(W1N) is the degree matrix andL is the graph Laplacian matrix
given byL =D −W . LE’s constraints facilitates the solution leading to a generalized
eigenvalue problem. Along this line, the embedded data is then thed smallest vector
eigenvectors of normalized LaplacianD−1/2LD−1/2. Very recently, a fast algorithm
to perform LE was introduced in [4]. Instead of using the whole input dataY , this
approach approximates the solution by using only a subset ofL data points (landmarks)
Ỹ ∈ RL×N . Furthermore, landmark projections are constrained to be locally linear,
such thatY ≈ Ỹ Z, beingZ the projection matrix. The embedded data is obtained by
enforcing it to fulfill the same local linearity property so thatX ≈ X̃. By replacing
this approximation in Eq. 1, we can easily demonstrate that embedded data is now
the eigenvectors ofZLZ⊤ multiplied byZ. In addition, to determineZ, the authors
propose to solve the simple problem||Y − Ỹ Z ||2 subject to linear conditions.

3 Divergence-based methods

Stochastic neighbor embedding (SNE) [3] minimizes the information divergence D be-
tween two distributionsPn = [pnm]1≤m≤N andQn = [qnm]1≤m≤N associated with then-th
point from observed and latent data, respectively. Then, using the Kullback-Leibler
directed divergence DKL , the SNE objective function is in the form:

ESNE(X) =
N∑

n=1

DKL (Pn||Qn) =
N∑

n,m=1

pnm log
pnm

qnm
. (2)

Definingδnm = ‖yn − ym‖
2 anddnm = ‖xn − xm‖

2, distributionsPn andQn can be
chosen as generalized, normalized nonsymmetric affinities in the form

pnm =
exp
(
− 1

2δ
2
nm/σ

2
n

)

∑
n,m′

exp
(
− 1

2δ
2
nm′/σ

2
n

) , and qnm =
exp
(
− 1

2d2
nm/π

2
n

)

∑
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exp
(
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2d2
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n

) , (3)
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with qnn = 0 and pnn = 0. A symmetric version of SNE (SSNE) can be achieved by
selecting full normalized affinities which can readily be obtained by slightly expres-
sions in (3). In this case, rather than a restricted sum, all entries must be summed
on the denominator in order to enforce that all normalized entries sum to 1. This can
be done by guaranteeing that1⊤NQ1N = 1

⊤
NP1N = 1. SNE-based methods suffer

from reaching distorted and overlapped latent space, whend is smaller than the in-
trinsic dimension [5]. To cope with this issue, another variant raised, which is named
t-SNE and consists of definingQn as at-distribution [7]. Further recently, enhanced
approaches have been proposed founded on the mixture of divergences. In [8], it is
proposed a mixture by adding a regularization parameterβ to balanceprecision and
recall so: (1− β) DKL (Pn||Qn) + βDKL (Qn||Pn). Similarly, in [6], a novel approach is
introduced which mixes the divergences as Dβ

KL = (1−β) DKL (Pn||Sn)+βDKL (Qn||Sn),
whereSn is a distribution following the same mixture rule so thatSn = (1−β)Pn+βQn.
This divergence is used in the so-called Jensen-Shannon embedding (JSE), which aims
then to minimizeEJSE=

∑N
n=1 DβKL (Qn||Sn) [6].

As an alternative to SNE methods, in [5], the Elastic Embedding (EE) is introduced.
EE is aimed to optimize:

EEE(X |λ) =
N∑

n,m=1

w+nmd2
nm + λ

N∑

n,m=1

w−nm exp(d2
nm) = E+EE(X) + λE−EE(X). (4)

Briefly put, this method attempts to involve the two objectives that SNE fulfills
but in a simpler way. To this end, which is the key of this method, two graphs are
used. Then, we have two kind of weighting coefficientsw+nm andw−nm being the entries
of attractiveW + and repulsiveW − affinity matrices, respectively. Both of them are
positive semi-definite matrices. For simplicity, full graphs affinities are considered:
w−nm = ‖yn − ym‖

2 and w+nm = exp(− 1
2δ

2
n/σ

2). From Eq. (4), the gradient ofEEE

can be written as:G(X |λ) = 4X(L+ − λL̃−) = 4XL, wherew̃−nm = w−nm exp(−d2
nm),

wnm = w+nm − λw̃
−
nm, and their corresponding LaplaciansL̃ = D̃ − W̃ andL =D −W .

Likewise, as calculated in LE,L+ is the non-normalized Laplacian and thusL+ =
D+ −W +. In [5], to carry out the search for the suboptimal embedded solutionX,
a gradient descent algorithm is used, which is powered via the spectral direction (SD)
proposed in [9].

4 Comparative analysis

The brief comparative analysis presented here encompasses links between methods
(Section 4.1), a discussion on algorithm implementation (Section 4.2) and some ex-
perimental results (Section 4.3).
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4.1 Links between methods

Relation between SNE and EE: Eliminating independent terms fromX, Equation (2)
can be expanded as

ESNE(X) =
N∑

n,m=1

pnm‖xn − xm‖
2
+

N∑

n=1

log
∑

n,m

exp(‖xn − xm‖
2). (5)

Hence we can appreciate that by omitting the log operator and adding a homotopy
parameterλ, ESNE becomes the EE’s cost function. Furthermore, EE is a variant of the
elastic network applied to solve the traveling salesman problem as explained in [10].

Relation between SNE and LE: Recalling Equation (5), it is noticeable that, doing as
in diffusion maps [11] which means using the normalized affinities so thatpnm = wnm,
the right hand side of the Equation is the same as the LE objective function.

Relation between EE and LE: The same as in SNE applies when comparing with
EE. However, it is noteworthy that by settingλ = 0, EE does not reach the same embed-
ding as LE since the optimization is different. EE’s embedding is determined through
a search and that of LE comes from a spectral decomposition under orthonormality
assumptions.

4.2 Brief discussion on implementation and complexity

Implementation via SD: Methods such as EE, SNE and SSNE can be implemented in
fast fashion via SD-based gradient descent search [5]. We denote then-th embedded
data point at iterationr asxn[r] = xn[r−1]+α[r]̺n[r]. SD is aimed at determining the
optimal direction̺ n[r] by incorporating a partial-Hessian strategy within the gradient
descent heuristic [9]. Then, by design, Hessian is heavily exploited which is advanta-
geous for subsequent developments since it can be be computed fast and has the suitable
property to be positive semi-definite. As an intuitive condition, sought direction must
hold thatB[r]̺n[r] = −gn, beinggn the columnn of G(X |λ) andB[r] any positive
semi-definite matrix. SD consists of calculating the gradient ofEEE(X |λ) following
the direction of an underlying convex function which arises whenλ = 0. Also, the
calculation of SD is speeded up by using Cholesky decomposition. Namely, rather than
calculating matrix directly withP = −G(X |λ)(B)−1 (which isO(N3D) when using
conventional Gaussian-Jordan elimination), two solve triangular systems in the form
R⊤R vec(P ) = − vec(G) are solved, whereR is the upper triangular matrix resulting
from the Cholesky decomposition ofB ⊗ Id. Latter calculation can be done inO(N2d)
with standard linear algebra routines. In addition, computation ofR needs to be done
only once at first iteration and its complexity isO( 1

3N).
Implementation via a full gradient and Hessian: In [6], the search is done by using

a full gradient calculated over the whole cost function (no approximations are done). In
this case, the search is done viaxn[r] = xn[r−1]+µn[r]∇E, whereµn[r] is an adaptive
step size dependent on the Hessian. Given the nature of divergences, doing so can
increase the complexity. Even more when using a mixture of divergences (E = EJSE),
calculation of gradient and Hessian may be more expensive. Nonetheless, the advantage
of this implementation is that scaling is considered in both high and low dimensional
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space. This provides a more modulated gradient and then a better tracking of the local
structure of data during the optimization process.

4.3 Experimental results and discussion

For shorthand notation,t-SNE using SD is denoted ast-SNE + SD. Likewise, LE via
Locally linear landmarks is denoted as LE + LLL. JSE andt-SNE are implemented via a
full gradient scheme. Both SD and full gradient implementations involve a backtracking
line search. To form the similarity matrices, given a perplexity parameterK, the relative
bandwidth parameterσn is estimated regarding its distributionPn so that the entropy
over neighbors of such distribution is approximately logK. This is done by a binary
search as explained in [5]. For experiments, we setK = 30. Also, for LE + LLL, the
number of landmarks isL = 500, andλ = 100 for EE. Regularization parameterβ for
JSE is set to be 1/2. The methods are tested over the well-known database COIL20
image bank holdingN = 1440 data points (20 objects in 72 poses/angles) withD =
1282. To quantify the performance of studied methods, the scaled version of the average
agreement rateRNX(K) introduced in [6] is used, which is ranged within the interval
[0, 1]. SinceRNX(K) is calculated at each perplexity value from 2 toN − 1, a numerical
indicator of the overall performance can be obtained by calculating its area under the
curve (AUC). Overall results regarding AUCRNX (K) are shown in Fig. 1. As well, the
resultant embedded spaces reached by each method are depicted.
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(a) RNX(K) for all considered methods.
The value of AUC is shown in the legend
besides the method’s name.

(b) CMDS (c) LE (d) LE + LLL

(e) SNE (f) SSNE (g) EE

(h) t-SNE + SD (i) t-SNE (j) JSE

Fig. 1: Results are shown regarding the quality measureRNX(K). The curves and their AUC (a)
for all considered methods are depicted, as well as the embedding data (b)-(j).

5 Discussion and final remarks

By one hand, spectral methods, in general, attempt to preserve the global structure.
Particularly, CMDS exhibiting a pronounced peak on large neighbors. LE + LLE re-
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sembles the LE’s behaviour. Then we can say that LLL is a good alternative to initialize
LE. In addition, LLL can also mean a significantly degreasing of the processing time
if O(N2d) + O( 1

3N) + O(L3) < O(N3). This inequality depends heavily on the num-
ber of landmarks, then determining an optimal number of landmarks is a crucial stage
aiming to get a good trade-off between processing time and performance (how much
it resembles the LE’s performance). By the other hand, SNE-like methods perform a
better embedding preserving smaller neighbours (local structure). We can notice that
SNE, SSNE and EE have a similar performance. In this case, SD makes that SNE and
EE behave as a symmetrized version due to strong assumption on the gradient calcu-
lation. On the contrary,t-SNE + SD performs a better embedding sincet-distributed
probabilities may improve the separation of underline clusters despite of biasing the
gradient. Indeed,t-SNE + SD accomplishes a similarRNX(K) shape and AUC in com-
parison witht-SNE. JSE outperforms the remaining considered methods due to both
the divergence type, and the identical similarity definition in the high-dimensional and
low-dimensional space.

This work gathers some key aspects to compare dimensionality reduction methods.
Namely, relations between them, algorithm implementation, and complexity/processing
time. Very recent methods were studied such as elastic embedding, locally linear land-
marks for laplacian eigenmaps and Jensen-Shanon embedding. Discussion and hints
provided here may facilitate users to chose a method according the trade-off between
performance and complexity.
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