
Speedy Greedy Feature Selection: Better
Redshift Estimation via Massive Parallelism

Fabian Gieseke1, Kai Lars Polsterer2, Cosmin Eugen Oancea1, and Christian Igel1

1- University of Copenhagen - Department of Computer Science
Universitetsparken 5, 2100 Copenhagen - Denmark

2- Heidelberg Institute for Theoretical Studies gGmbH - Astroinformatics
Schloß-Wolfsbrunnenweg 35, 69118 Heidelberg - Germany

Abstract. Nearest neighbor models are among the most basic tools in
machine learning, and recent work has demonstrated their effectiveness in
the field of astronomy. The performance of these models crucially depends
on the underlying metric, and in particular on the selection of a meaningful
subset of informative features. The feature selection is task-dependent and
usually very time-consuming. In this work, we propose an efficient par-
allel implementation of incremental feature selection for nearest neighbor
models utilizing nowadays graphics processing units. Our framework pro-
vides significant computational speed-ups over its sequential single-core
competitor of up to two orders of magnitude. We demonstrate the ap-
plicability of the overall scheme on one of the most challenging tasks in
astronomy: redshift estimation for distant galaxies.

1 Motivation

Astronomy is nowadays a data-rich science. Current projects such as the Sloan
Digital Sky Survey [1] contain terabytes of data about hundreds of millions as-
tronomical objects. Upcoming projects to be launched within the next few years
will gather such data volumes per night [2] yielding total data volumes in the
peta- and exabyte range. Naturally, such large-scale settings render a manual
data analysis impossible and machine learning techniques will become crucial
tools in this field [3]. Nearest neighbor models are one of the simplest yet often
effective tools in machine learning [4]. Learning scenarios well-suited for this
type of models are usually given if the input space dimension is low and a large
amount of training patterns is available. This is precisely the situation given for
astronomical surveys with millions of training objects.

In recent studies, nearest neighbor methods have successfully been applied
to various astronomical learning tasks including the detection of distant galax-
ies [5] and the estimation of specific physical properties [6]. These models can
already yield a superior performance over other learning schemes using standard
features given in the astrophysical catalogs. In addition, as shown by Polsterer et
al. [7], one can even further improve the models’ quality by performing a feature
selection step in the training phase. The involved computations can, however,
be very time-consuming and have to be repeated for each new task.

In this work, we provide a parallel implementation for incremental feature
selection given nearest neighbor models, which is tailored towards the specific

87

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

needs of nowadays graphics processing units (GPUs). Our framework can effec-
tively take advantage of the massive computational resources provided by these
devices yielding speed-ups of up to two orders of magnitude over its single-core
variant. We demonstrate the practical merits of our scheme in the context of
redshift estimation models for distant galaxies given photometric data.

2 Nearest Neighbors and Feature Selection

We focus on regression with training sets T = {(x1, y1), . . . , (xn, yn)} ⊂ Rd×R.
A nearest neighbor model is based on the labels given in the training set, which
are averaged for the k nearest neighbors of a given query object q ∈ Rd via
h(q) =

∑
xi∈Nk(q)

yi. Here, Nk denotes the set of indices of the k patterns that

are closest to q, where “closeness” is defined via an arbitrary metric (we use the
Euclidean one in this work). The features (i.e., the components of q) usually
vary w.r.t. their “expressiveness”, and using only a subset of features can im-
prove the quality of the model h. Therefore, feature selection [4] is employed for
choosing informative features. Selecting an optimal subset of fixed cardinality
f < d can, for instance, be accomplished in a brute-force manner by evaluating
all possible subsets using the cross-validation (CV) error [4]. However, such an
approach scales badly and quickly becomes computationally intractable. Stan-
dard alternatives are forward and backward feature selection, which try to select
the best-performing features in a greedy manner [4]. Still, even given training
sets of moderate sizes, these greedy methods can be very time-consuming.

One way to accelerate such a feature selection step is to speed up the involved
nearest neighbor computations. A variety of schemes has been proposed over the
last decades for this task. Typical techniques are k-d trees [8] or locality-sensitive
hashing [9]. However, such tools either perform poorly in higher dimensions or
only yield approximated answers. A recent trend is to make use of (exact) paral-
lel implementations for many-core devices. For instance, Garcia et al. [10] utilize
highly-tuned GPU matrix multiplication libraries for nearest neighbor search.
Other schemes are based on, e.g., adapted spatial search structures [11, 12, 13],
see, e.g., Cayton [11] and the references therein. However, to our knowledge, no
parallel implementation that addresses incremental feature selection and nearest
neighbor models simultaneously is available for GPUs.

3 Algorithmic Framework

Our framework aims at an efficient parallel implementation of feature selection
for nearest neighbor models (using cross-validation errors to select “informative”
dimensions). We will concentrate on the case of forward selection; all derivations
provided can, however, easily be adapted to the case of backward selection.

3.1 General Workflow

The workflow of our approach is outlined in Algorithm 1: First, the matrix M ∈
Rn×n containing the squared distances, the array selected dimensions indicat-

88

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Algorithm 1 IncrementalFeatureSelection(T , f)

Require: A training set T = {(x1, y1), . . . , (xn, yn)} ⊂ Rd × R and a number f < d.
Ensure: An array selected dimensions containing the selected features.
1: Initialize empty (squared) distance matrix M ∈ Rn×n; {GPU, in parallel}
2: int selected dimensions[d] = {0, . . . , 0}; float val errors[d];
3: for i = 1, . . . , f do
4: val errors = GetValidationErrors(M); {GPU, in parallel}
5: imin = GetMinDim(val errors);
6: selected dimensions[imin] = 1;
7: M = M + Mimin ; {GPU, in parallel}
8: end for
9: return selected dimensions

ing the selected features, and the array val errors are initialized. The iterative
feature selection starts in Step 3: GetValidationErrors computes, for each
dimension j that has not yet been selected (i.e., selected dimensions[j]=0),
the CV error for the case of dimension j being “added” to the current set of
features (see below). These values are stored in the array val errors, and
GetMinDim returns the index of the smallest error contained in it (thus, imin

corresponds to the dimension whose addition leads to the smallest CV error). Fi-
nally, both selected dimensions and M are updated accordingly, where Mimin

denotes the all-pairs (squared) distance matrix based on dimension imin only.

3.2 Parallel Implementation for Many-Core Systems

The procedure GetValidationErrors consumes most of the runtime. We now
describe this component as well as details of our GPU implementation.

Computing Validation Errors. The layout of GetValidationErrors is shown
in Algorithm 2: The procedure computes, for each dimension j not yet selected,

the matrix M̂ = M + Mj containing all pairwise distances with dimension j
being “added”. The intermediate matrix is then used to obtain the desired CV
error via ComputeCVError.1 Finally, the array val errors is returned.

Many-Core Implementation. The most significant part of the overall work of
Algorithm 1 takes place on the GPU (Steps 1, 4, and 7), while the CPU is
only used for synchronizations and for updating selected dimensions (Steps
2, 5, and 6). The initialization and the update of M are trivially parallelizable
on the GPU and exhibit a negligible runtime. As such, we focus on the call
GetValidationErrors(M). We make use of the following three techniques:

(1) Aggressive fusion between the kernels that produce and consume the same

arrays. For example, M̂ and Mj are not materialized in memory. Instead,

1Our implementation can efficiently compute the cross-validation errors for a whole range
k ∈ {k1, . . . , kmax} of model parameters, basically at the same cost as for kmax only (by
initially computing the kmax nearest neighbors and by reusing them for each ki < kmax).

89

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Algorithm 2 GetValidationErrors(M)

Require: A distance matrix M ∈ Rn×n.
Ensure: An array val errors containing the cross-validation errors.
1: for j = 1, . . . , d do
2: if selected dimensions[j] = 0 then

3: M̂ = M + Mj ; {GPU, in parallel}
4: val errors[j] = ComputeCVError(M̂); {GPU, in parallel}
5: end if
6: end for
7: return val errors

each thread computes the corresponding element of M̂ “on the fly” by
resorting to both M and T that are kept (and updated) in global memory.

(2) Enhancing the locality of reference by ensuring that the access to the matrix
M and to the training patterns given in T are effectively supported by
coalescing and by caching (i.e., all threads in a local work group access the
same memory element per instruction), respectively.

(3) Increasing the degree of parallelism by a factor of about d, which is achieved
by parallelizing the outer loop of Algorithm 2. This yields an efficient
execution of the previous steps, which would otherwise fail to hide latency.

The overall implementation for Algorithm 2 invokes d̄n threads, where d̄ denotes
the number of dimensions not yet selected (selected dimensions[j] = 0). Each
thread, being associated with a training pattern and a dimension j, computes
the kmax nearest neighbors of the pattern given in the remaining folds (while
“adding” dimension j on the fly; for instance, using 10-fold CV, neighbors in 9
folds have to be computed). Note that this enables the effective cached access to
all training patterns, see technique (2). Given the nearest neighbors (stored in
global memory), the induced predictions are obtained using another kernel (for
each pattern and each k value). This yields the desired CV errors.

4 Experiments

4.1 Experimental Setup

The experiments were conducted on a standard computer with an Intel(R)

Core(TM) i7-3770 CPU at 3.40GHz (4 cores, one is used), 16GB RAM, and a
GeForce GTX 770 GPU with 1536 shader units and 4GB RAM. The operating
system was Ubuntu 12.04 (64 Bit). We focused on a comparison between the
sequential (parfeatnn(cpu)) and the many-core (parfeatnn(gpu)) implemen-
tation, which were implemented in C and OpenCL (using gcc-4.6 and Swig).

We used a challenging astronomical regression task for the runtime experi-
ments, namely photometric redshift estimation for distant galaxies. The data
stem from the Sloan Digital Sky Survey [1]. Instead of resorting to the standard

90

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

0
200
400
600
800
1000
1200
1400
1600

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

ru
n
ti
m
e
(s
)

sp
ee
d
-u
p

d

parfeatnn(cpu)
parfeatnn(gpu)

(a)

0

1000

2000

3000

4000

5000

6000

5 10 15 20 25 30 35 40

50

100

150

200

250

ru
n
ti
m
e
(s
)

sp
ee
d
-u
p

f

parfeatnn(cpu)
parfeatnn(gpu)

(b)

0
200
400
600
800
1000
1200
1400
1600
1800

2 4 6 8 10 12 14 16 18 20

50

100

150

200

250

ru
n
ti
m
e
(s
)

sp
ee
d
-u
p

kmax

parfeatnn(cpu)
parfeatnn(gpu)

(c)

Figure 1: Runtime behavior w.r.t. (a) the dimension d, (b) the number of selected
features f , and (c) the maximum number kmax of nearest neighbors. Speed-ups of
parfeatnn(gpu) over parfeatnn(cpu) are given in each plot (dotted line).

features commonly considered in this setting [5], we used an augmented set of
features induced by all difference combinations of selected raw features (similar
to Polsterer et al. [7]). The final training set consisted of n = 10, 000 patterns
each having d = 585 features.2 We would like to point out that similar speed-ups
have been observed on several other data sets as well.

4.2 Runtime Results

If not stated otherwise, we considered k ∈ {2, 5, 10} as model grid, conducted a
10-fold cross-validation, and fixed the number of selected features to f = 10.

Parameters: d, f, and k. We analyzed the influence of several problem-dependent
parameters using n = 5, 000 patterns. In Fig. 1, the runtime dependencies on
d, f , and k are shown for varying assignments (we used kmax as single model
parameter). While the general runtime behavior was the same for both schemes,
the GPU implementation needed significantly less time. Further, the obtained
speed-ups were roughly independent on the values of d and f , while the runtime
gain slightly decreased for larger assignments of k (keeping track of more nearest
neighbors leads to an increase of branch divergence, which is, in turn, expensive
on many-core devices).

0

5000

10000

15000

20000

2000 4000 6000 8000 10000

50

100

150

200

250

ru
n
ti
m
e
(s
)

sp
ee
d
-u
p

n

parfeatnn(cpu)
parfeatnn(gpu)

(a)

0

50

100

150

200

250

2000 4000 6000 8000 10000

ru
n
ti
m
e
(s
)

n

Total Runtime
GetValidationErrors

Matrix Updates
Overhead (CPU)

(b)

Figure 2: (a) Speed-Ups and (b) Overhead

Speed-Ups & Overhead.
We subsequently inves-
tigated the performance
gains for various training
set sizes n, see Fig. 2 (a)
for the case of f = 50 se-
lected features. It can be
seen that the GPU implementation yielded a significant speed-up (dotted line)
over its single-core competitor (>150). The runtimes of the different phases of
parfeatnn(gpu) are shown in Fig. 2 (b). Clearly, the most significant part of
the runtime was spent on computing the CV errors (Algorithm 2); the other
phases contributed less than 1% to the runtime.

2An in-depth description of this learning task will be provided in a follow-up work.

91

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

5 Applications: Redshift Estimation and Beyond

0.14

0.18

0.22

0.26

0.3

1 5 10 15 20 25 30 35 40 45 50

R
M
S
(∆

n
o
r
m
)

f

all features

CV Error

Figure 3: Redshift Estimation

We applied the proposed algorithm to the
problem of redshift estimation for galax-
ies [5, 7]. The feature selection significantly
reduced the CV error, see Fig. 3: The plot
shows the RMS(∆norm) [5] for an increasing
number f of selected features. Our GPU implementation computed these re-
sults in less than 3 minutes (instead of more than 6 hours). This demonstrates
its potential for such tasks, especially for (but not restricted to) astronomy.

Acknowledgements. FG acknowledges support from the German Academic Ex-
change Service and CI from The Danish Council for Independent Research
through the project Surveying the sky using machine learning (SkyML).

References

[1] D. G. York et al. The Sloan digital sky survey: Technical summary. The Astronomical
Journal, 120(3):1579–1587, 2000.

[2] Z. Ivezic, J. A. Tyson, E. Acosta, R. Allsman, et al. LSST: From science drivers to
reference design and anticipated data products. arXiv/0805.2366v2, 2011.

[3] K. Borne. Scientific data mining in astronomy. In Next Generation of Data Mining, pages
91–114. Chapman and Hall/CRC, 2009.

[4] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
2 edition, 2009.

[5] K. L Polsterer, P. Zinn, and F. Gieseke. Finding new high-redshift quasars by asking the
neighbours. Monthly Notices of the Royal Astronomical Society, 428(1):226–235, 2013.

[6] K. Stensbo-Smidt, C. Igel, A. Zirm, and K. Steenstrup Pedersen. Nearest neighbour
regression outperforms model-based prediction of specific star formation rate. In Proc. of
the 2013 IEEE International Conference on Big Data, pages 141–144. IEEE, 2013.

[7] K. L. Polsterer, F. Gieseke, C. Igel, and T. Goto. Improving the performance of photo-
metric regression models via massive parallel feature selection. In Proceedings of the 23rd
Annual Astronomical Data Analysis Software & Systems Conference, 2013. In press.

[8] J. L Bentley. Multidimensional binary search trees used for associative searching. Com-
munications of the ACM, 18(9):509–517, 1975.

[9] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse
of dimensionality. In Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, pages 604–613. ACM, 1998.

[10] V. Garcia, E. Debreuve, F. Nielsen, and M. Barlaud. K-nearest neighbor search: Fast
GPU-based implementations and application to high-dimensional feature matching. In
Proceedings of the 17th IEEE International Conference on Image Processing, pages 3757–
3760. IEEE, 2010.

[11] L. Cayton. Accelerating nearest neighbor search on manycore systems. In Proceedings of
the 2012 IEEE 26th International Parallel and Distributed Processing Symposium, pages
402–413. IEEE, 2012.

[12] J. Heinermann, O. Kramer, K. L. Polsterer, and F. Gieseke. On GPU-based nearest
neighbor queries for large-scale photometric catalogs in astronomy. In KI 2013: Advances
in Artificial Intelligence, pages 86–97. Springer, 2013.

[13] N. Nakasato. Implementation of a parallel tree method on a GPU. Journal of Computa-
tional Science, 3(3):132–141, 2012.

92

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

