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Abstract. Learning rules for spiking neural networks have emerged that
can classify spatio-temporal spiking patterns as precise target spike trains,
although there remains uncertainty in which rule to select that offers the
greatest performance. Here, we quantify the performance of a stochastic
neuron model in learning to classify input patterns by precise target re-
sponses as outputs, and compare its performance against other learning
rules. We achieve a level of performance that is comparable with that
found previously for alternative neuron models, and demonstrate the ad-
vantages of classifying inputs by multiple-spike timings: both by increasing
the performance and the reliability of classifications.

1 Introduction

A Spiking Neural Network (SNN) represents a third generation neural network
model, being a significant improvement in terms of biological realism over its
predecessors. Despite this, there exist relatively few learning rules for SNN’s
over more traditional neural network models, despite theoretically being capable
of superior computational power by utilising a temporal coding scheme [1].

Several learning rules have been developed that enable the learning of mul-
tiple and precise spike times: important examples include Remote Supervised
learning Method (ReSuMe), the Chronotron and a statistical method developed
by Pfister et al. [2, 3, 4]. ReSuMe is a biologically realistic and empirically
derived rule, allowing the supervised learning of target spike trains in response
to spiking input patterns. This rule is ideal in classifying input patterns by
temporally precise spike trains, although it was shown to have an inferior mem-
ory capacity in comparison with the E-learning form of the Chronotron learning
rule [3]. Additionally, ReSuMe was further extended to learning in a multilay-
ered network [5], where it was shown to converge in learning more rapidly on
a pattern classification task as the number of hidden neurons increased. The
rule developed by Pfister et al. [4] optimises the probability of a postsynaptic
neuron generating a target spike train in response to a spiking input pattern.
Unlike ReSuMe and the Chronotron, few attempts in applying this rule to clas-
sifying multiple input patterns by temporally precise target spike trains have
been made, making the rule’s efficiency difficult to estimate.

Therefore, we explore the performance of Pfister et al.’s learning rule on a
pattern classification task, with the aim of quantifying its memory capacity in
terms of the number of input patterns that can be reliably classified by precise
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output spike trains. We further examine the potential benefits that can be gained
from target spike trains that consist of multiple spikes as opposed to single-
spike outputs; both in terms of the absolute performance and the reliability of
responses.

2 Model

A single readout neuron receives input from m presynaptic neurons. The list
of firing times due to the jth input, 1 ≤ j ≤ m, is denoted by the spike train
Xj . If the readout neuron generates the output spike train Y in response to an
input pattern X = {Xj}, then its membrane potential at time t is defined by
the Spike Response Model [6]:

u(t|X, Y ) := Urest +
∑
j

wj
∑
s∈Xj

ε(t− s) +
∑
s∈Y

κ(t− s) , (1)

with Urest = −70 mV the resting membrane potential and wj the jth afferent
synaptic weight. The Postsynaptic Potential (PSP) kernel is taken as ε(s) =
ε0

τm−τs (e
−s/τm − e−s/τs) , where ε0 = 20 mV·ms is a scaling constant, τm = 10

ms the membrane time constant and τs = 2 ms the synaptic rise time. The reset
kernel is κ(s) = κ0e

−s/τm , with κ0 = −15 mV. Both kernels are set to 0 for
s < 0. Given the neuron’s membrane potential u(t), spike times are distributed
according to the instantaneous firing rate:

ρ(u(t)) = ρ0 exp{β(u(t)− ϑ)} , (2)

where ρ0 = 0.01 ms−1 and β = 5 mV−1 are stochasticity parameters, and
ϑ = −55 mV is the firing threshold. The probability of the neuron firing at each
moment in time is ρ(t) δt, where we set the simulation time step δt = 0.2 ms.

Using a stochastic model for neuronal spike generation allows us to determine
the likelihood of producing a desired postsynaptic spike train Y ref in response
to X. As shown by Pfister et al. [4], the log-likelihood of generating Y ref is:

logP (Y ref |X) =
∑
s∈Y ref

log ρ(u(s))−
∫ T

0

ρ(u(t)) dt , (3)

given an input pattern lasting duration T . Taking the gradient of the above
and combining with equations (1) and (2) determines the direction of synaptic
weight updates:

Δwj = η
∂ logP (Y ref |X)

∂wj

= η

∫ T

0

[ ∑
s∈Y ref

δ(t− s)− ρ(u(t))
] ∑
s∈Xj

ε(t− s) dt , (4)

where the factor β is incorporated into the learning rate η.
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The network must learn to classify p input patterns into c classes, where
in our simulations an equal number of input patterns were assigned to each
class. Each class had an associated target spike train Y ref , that the network
readout neuron learnt to reproduce in response to all input patterns belonging
to the same class. Learning took place on an episodic basis, where an input
pattern was randomly selected at the start of each episode to be presented to
the network, lasting duration T = 500 ms.

In determining which target spike train (and class) most closely matched the
output spike train Y out on each episode, we used the van Rossum Distance (vRD)
[7]. The vRD measures the distance between two spike trains, giving the metric
D(Y out, Y ref) , where we set the coincidence time constant τc = 10 ms. In more
detail, the vRD between Y out and each Y ref was computed at the end of each
episode, giving the set of distances: D = {D1, ...,Dc}, for c different classes.
The matching class number i corresponded to the smallest distance Di, that
is i = arg miniD. Additionally, we added the constraint that the difference
between Di and the next smallest distance exceeded 0.1 for any classification to
be made, thereby removing any ambiguity in selecting the matching class.

3 Results

The network consisted of m = 400 presynaptic neurons as the inputs, and 1
postsynaptic neuron as the readout. Input neurons were fully connected to the
readout neuron, where synaptic weights were initialised to 0. Input patterns
presented to the network consisted of independent Poisson spike trains at each
input neuron with a mean firing rate of 6 Hz, with a random realization for each
pattern. Input patterns were equally assigned between 3 classes, where each
class was associated with a target spike train that contained between 1 and 5
spikes, depending on the learning task. Target spike times for each class were
randomly selected from a uniform distribution over the interval [40, T], with a
minimum interspike interval of 10 ms. Target spike trains differed from each
other by D > 1− e−1, corresponding to a vRD between two spike times that are
separated by at least τc, to ensure classes were unique.

The firing activity of the readout neuron was defined by equation (2) and
afferent synaptic weights were updated according to equation (4) at the end
of each learning episode. Synaptic weights were hard-bound to the interval
−10 ≤ wj ≤ 10. For the learning rate, an exponential dependence on the
number of input patterns gave optimal performance: η = c1 exp(−c2 p), with
fitted parameters c1 = 0.022 and c2 = 0.025. To ensure convergence in learning,
the total number of episodes on each learning task was 1000p.

To measure the performance P of the network with the episode number n we
took a moving average: P̃ (n) = (1−λ)P̃ (n− 1)+λP (n), where P (n) = 100% if
the correct pattern was classified and P (n) = 0 otherwise. The timing parameter
was set to λ = 2/(1 + 100p). A moving average was necessary, given that the
readout neuron’s spike-timing responses fluctuated between episodes.

Figure 1 shows the performance of the network after convergence in learning
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Fig. 1: Classification performance P̃ after convergence in learning, as a function
of the number of input patterns and the number of target spike times. Input
patterns are equally assigned between 3 classes. Performance values are averaged
over 40 realizations, each with a random initialization. Error bars show the
standard error of the mean. The performance for 1 target spike remains below
99.9% over all the number of input patterns.

when tasked with classifying between 3 and 45 input patterns that are equally
assigned between 3 classes. Between 1 and 5 target spike times belonged to each
class. The performance of the network for 1 target spike was found to decrease
slowly, reaching 95.4 ± 0.2% by 45 input patterns. By contrast, The perfor-
mance decreased more rapidly for a greater number of target spikes (reaching
80.1± 0.9%, 73.5± 0.9%, 71.5± 0.8% and 71.8± 0.6 % for 2, 3, 4 and 5 target
spikes respectively by 45 input patterns). Despite this, multiple target spikes
demonstrated superiority over a single target spike when learning fewer input
patterns: approaching 100% performance for more than 2 target spikes and less
than 18 input patterns. Furthermore, the standard deviation of the performance
was smaller for multiple rather than single target spikes when learning fewer in-
put patterns: with a standard deviation σ < 0.05% for greater than 2 target
spikes and σ ≈ 0.3% for 1 target spike, for less than 15 input patterns. Such
a reduction in the variation of the performance was attributed to the readout
neuron only having to reproduce a fraction of the target spike times belong-
ing to each class, for sufficiently reliable pattern classifications. For example:
when classifying patterns into classes with 3 target spikes, an output spike train
matching only 2 of 3 target spike times would be sufficiently close for a correct
input classification. For classes with 1 target spike however, there must be at
least 1 output spike for any classification to be made.

Conversely, for a larger number of input patterns, the standard deviation of
the performance increased with the number of target spikes: with 3% < σ < 6%
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Fig. 2: Maximum number of input patterns that can be learnt as a function of the
number of target spike times belonging to each class. Different curves correspond
to the minimum allowable performance P̃ after convergence in learning. Each
point is accurate to within 2 patterns.

for greater than 1 target spike and σ ≈ 1% for 1 target spike, by 45 input
patterns. This was due to the increased load on the network in having to learn
to fire at multiple times, in addition to learning a large number of input patterns.

In finding the optimal number of target spikes that should belong to each class
for reliable classifications, we determined the maximum number of input patterns
that could be learnt at a given level of performance (figure 2). For example, a
performance greater than 99% and 99.9% corresponded to a probability of failure
on each episode that was less than 10−2 and 10−3 respectively. As expected, the
maximum number of patterns that could be learnt decreased as the minimum
performance level increased, with a shift towards a larger number of target spikes
belonging to each class.

According to [8, 3] the maximum number of patterns p that can be learnt
in a network increases with the number of afferent synapses m, by the ratio
α = p/m; also being the capacity of the network. From figure 2, we determined
the capacity as α = 0.045 ± 0.005 for P̃ > 99.9%, corresponding to classes
containing 3 or 4 target spikes. In comparison with previous work, this capacity
is superior to that of ReSuMe and I-learning (previously determined in [3] as
between 0.02 and 0.04), whilst being an order of magnitude less than E-learning
(0.22) [3].

4 Discussion

In this paper, we demonstrated the capability of a stochastic neuron model in
learning to classify input patterns by the precise timing of output spikes. We
considered both single and multiple target spikes that belonged to each class, and
compared their performance when classifying between 3 and 45 input patterns.
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We found classes containing 3 or 4 target spikes were optimal when classifying
input patterns: both by increasing the level of performance, and reducing the
variation in the performance. Our method was also found to be comparable with
that found previously for alternate neuron models.

The performance of the network dropped off significantly after learning more
than 18 input patterns, that might impact on its potential for real applications.
Since the maximum number of input patterns that can be classified scales with
the size of the network [3], a solution could be to simply increase the number
of input neurons for a desired level of performance. Alternatively, more than
one readout neuron could be implemented, with the load on the network being
equally divided between them.

We assumed a supervised signal was available during learning to provide
target spike trains to the network. There remains much uncertainty in the
origin of such a signal however, with reinforcement learning representing a more
biologically realistic alternative. In a previous paper [9], we demonstrated how
a target spike train could be learnt with a delayed reward signal.

This paper was concerned primarily with establishing the potential applica-
bility of a stochastic neuron model in learning to classify patterns, where we only
determined the capacity of the network for 400 afferent synapses, with input pat-
terns equally divided between 3 classes. It is beyond the scope of this paper to
explore various network setups that might have an impact on learning, although
future work could aim to further quantify the capacity over a varying number
of afferent synapses and classes, as well as to provide a more direct comparison
against another learning rule such as ReSuMe.
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