
Application of Newton’s Method to Action
Selection in Continuous State- and Action-Space

Reinforcement Learning

Barry D. Nichols and Dimitris C. Dracopoulos

School of Science and Technology
University of Westminster, 115 New Cavendish St, London, W1W 6XH - England

Abstract. An algorithm based on Newton’s Method is proposed for ac-
tion selection in continuous state- and action-space reinforcement learning
without a policy network or discretization. The proposed method is val-
idated on two benchmark problems: Cart-Pole and double Cart-Pole on
which the proposed method achieves comparable or improved performance
with less parameters to tune and in less training episodes than CACLA,
which has previously been shown to outperform many other continuous
state- and action-space reinforcement learning algorithms.

1 Introduction

When reinforcement learning (RL) [1] is applied to problems with continuous
state- and action-space it is impossible to compare the values of all possible
actions; thus selecting the greedy action a from the set of all actions A available
from the currents state s requires solving the optimization problem:

argmax
a

Q(s, a), ∀a ∈ A (1)

Although it has been stated that if ∇aQ(s, a) is available it would be possible
to apply a gradient based method [2], it is often asserted that directly solving the
optization problem would be prohibitively time-consuming [3, 4]. Here we inves-
tigate the possibility of applying Newton’s Method to solving (1), and present
results obtained on two benchmark problems from the literature: Cart-Pole and
double Cart-Pole. Performance is compared to a state-of-the-art method: con-
tinuous actor critic learning automaton (CACLA) which has previously been
shown to outperform other techniques on the Cart-Pole problem [5].

2 Current Methods

There are several approaches to applying RL to problems with continuous state-
and action-space, and although they all enable the application of RL to contin-
uous problems they also all have some drawbacks:

Action-space discretization [2] the granularity of which must be determined
to allow sufficient representation of the value function whilst ensuring |A| re-
mains small enough to allow evaluation of all actions; this is addressed, to some
extent, by [6] which only selects from two actions a± aΔ, however, this signif-
icantly limits the possible actions; interpolation [7] suffers from a similar trade

141

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

off between sufficient wires to represent the value function without requiring too
much computation; actor-critic methods [4] require two function approximators,
which must both be trained; direct policy search [8, 9] requires many episodes,
which may be expensive, in order to optimize the policy function without taking
advantage of rewards received at each time-step.

3 Proposed Method

The method proposed here applies the well known iterative optimization tech-
nique Newton’s Method (NM) [10] to solving (1) in order to select the greedy
action a, by taking advantage of the ability to quickly calculate ∇aQ(s, a) and
∇2
aQ(s, a) when a multilayer perceptron (MLP) is applied to the approximation

of the value function. By setting s to the current state, we are able to solve (1)
using NM, as shown in Algorithm 1.

In the following experiments a single hidden layer MLP was used with 12
nodes in the hidden layer, with a tanh activation function and a linear output
layer. The SARSA algorithm [1] was applied to calculate the error used to
update the value function, and backpropagation (with momentum of 0.75) was
utilized in updating the weights; hence, we shall refer to the proposed method
as NM-SARSA.

Algorithm 1 Newton’s Method Action Selection
1: procedure GetActionNM(s)
2: abest ← 0
3: for all a0 ∈ {amin, amin + aΔ, . . . , amax − aΔ, amax} do
4: a ← a0, aprevious ← amax + 10
5: for i ← 1,max iterations do

6: a ←
[
a− ∂Q(s,a)/∂a

∂2Q(s,a)/∂a2

]amax

amin

� Limit a to allowable range

7: if Q(s, a) > Q(s, abest) then
8: abest ← a
9: end if
10: if |a− aprevious| < 0.001 then
11: break � If a has converged move on to next a0

12: end if
13: aprevious ← a
14: end for
15: end for
16: return abest
17: end procedure

As few iterations of NM were required to converge, this algorithm does not in-
troduce a significantly large run-time overhead compared with discretized meth-
ods, whilst allowing any a ∈ [amin, amax]. As NM-SARSA is not limited to the
discrete actions amin + n · aΔ, which are merely the starting points for NM, it
is possible to apply a far larger aΔ for this algorithm than with action-space
discretization methods (here aΔ = 0.5 was applied to selecting a ∈ [−1, 1]).

A maximum of 10 iterations of NM was used; however, if there was no signifi-
cant change in a the NM loop was terminated immediately. Also, as a sometimes
reached a point where it was switching between 2 or more values, abest was up-
dated at every iteration to ensure the maximum action was returned.

142

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

4 Experiments

The Cart-Pole problem and double pole variant were used to evaluate the per-
formance of NM-SARSA. In both problems the aim is for the agent to learn
a control policy to balance the pole(s) for a specified duration of time whilst
remaining within the boundaries of the track.

Both experiments were conducted without noise, with Gaussian noise and
also with uniform noise. Noise was added to the action after it was limited to
the allowable range; thus the applied force may exceed that which was available
to the agent. The agent was not made aware of noise, and therefore would up-
date the value and policy functions based on the selected action rather than the
action applied to the environment. Gaussian noise was generated from the nor-
mal distribution and multiplied by Fmax, whereas uniform noise was randomly
selected from [−Fmax/2, Fmax/2].

For each episode a simulation was run for a maximum of 120 simulated
seconds and was terminated immediately if either the pole (one of the poles)
fell or the cart reached the edge of the track. The pole was considered to have
fallen if |θ| > π/15, and the cart reached the edge of the track if |x| > 2.4.
Every 0.02 simulated seconds the RL agent selected an action; noise was added
to the action; the environment was updated using the Runge Kutta fourth order
method and the reward was calculated. The reward was -1 if the pole fell or the
cart reached the edge of the track and 0 otherwise.

θ

x

(a) Diagram of the Cart-Pole prob-
lem.

θ1

θ2

x

(b) Diagram of the double Cart-
Pole problem.

The parameters of the RL agents for both experiments are listed in Table 1.
These parameters were found to perform best of all those experimented with on
the noise-free setting, but were not re-tuned when noise was added.

Parameter
Cart-Pole Double Cart-Pole

NM-SARSA CACLA NM-SARSA CACLA
Learn rate 0.3 0.1 0.2 0.1
RL step-size (α) 0.2 0.1 0.2 0.2
CACLA variance (β) N/A 0.001 N/A 0.001
RL discount rate (γ) 0.9 0.8 0.9 0.9
Exploration Gaussian Gaussian none Gaussian

Table 1: RL Agent Parameters

143

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

4.1 Cart-Pole Balance Problem

The Cart-Pole problem is a widely used control benchmark problem [5, 11],
but often the actions are limited to A = {0,±10}N; here, however, continuous
actions are permitted. The equations of motion used to update the environment
were as [11].

The state vector comprised the pole angle; pole angular velocity; cart distance
from centre of track; and cart velocity s = [θ, θ̇, x, ẋ]�. The action was the force
applied to the cart a = F ∈ [−10, 10]N. The initial state for each episode was [0+
o, 0, 0, 0]�, where o was uniformly generated offset in the range [−0.05, 0.05]. The
exploration schedule used for both CACLA and NM-SARSA was implemented
by multiplying the random exploration value by a coefficient before applying
it to the action. This exploration coefficient was set to 1 at the start of each
episode and was reduced at each time-step by 0.001 until it reached 0.

4.2 Double Cart-Pole Balance Problem

The double Cart-Pole problem is an extension of the standard Cart-Pole prob-
lem, whereby the cart has two poles, of differing lengths, both of which must be
balanced. The simulation in this experiment was the same as that of [4] except
the maximum time of the simulation was 120s (rather than 20s) making the task
more challenging.

The state vector comprised the angle and angular velocity of each pole; cart
distance from centre of track; and cart velocity s = [θ1, θ̇1, θ2, θ̇2, x, ẋ]

�, and the
action was the force applied to the cart a = F ∈ [−40, 40]N. The initial state for
each episode was [π180 , 0, 0, 0, 0, 0]

� (as [4]).
The exploration magnitude used by CACLA was kept constant for all episodes,

but every tenth episode was run without exploration to determine when learn-
ing has been achieved. This was found to perform better than any exploration
schedules tested. The exploration size was smaller than was used in [4] as in
those experiments it was orders of magnitude larger than the maximum action
thereby forcing the agent to learn a bang-bang control policy.

5 Results

Results were produced from 50 different runs of NM-SARSA and CACLA. As
soon as the agent succeeded in one of the episodes no further training took place;
however, 10 testing episodes were carried out with no training or exploration in
order to test the performance of the controller. The percentage of runs in which
the agent succeeded for all 10 testing episodes is the testing success rate.

Table 2 shows the success rate, median, minimum and maximum number of
episodes taken by each method to successfully balance the Cart-Pole for 120s,
and also the testing success rate. There were no testing episodes when noise was
not applied to the double Cart-Pole as the initial state was the same for every
episode.

144

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

Problem Method Noise
Success
Rate

Episodes to Train Testing
Success RateMedian Min Max

Single Pole

CACLA
None 100% 129 68 267 98%
Gaussian 100% 136 76 314 92%
Uniform 100% 149 84 269 90%

NM-SARSA
None 100% 98 52 215 98%
Gaussian 100% 79 39 127 94%
Uniform 100% 81 48 155 90%

Double Pole

CACLA
None 96% 430 20 970 N/A
Gaussian 94% 430 180 970 90%
Uniform 40% 720 290 980 32%

NM-SARSA
None 100% 89 2 464 N/A
Gaussian 100% 106 50 639 72%
Uniform 98% 131 49 602 72%

Table 2: Results

As can be seen from Table 2, NM-SARSA achieves comparable performance
with CACLA, but consistently trains in less episodes. On the double pole prob-
lem there was an even greater difference in the number of episodes required to
train NM-SARSA compared to CACLA, also the success rate of NM-SARSA was
a significant improvement over that of CACLA when uniform noise was used.

The plots in Figure 2 were produced on the noise-free simulation, where 1000
episodes were run regardless of whether the agent could balance the pole(s) in
order to calculate the average balance time per episode averaged over the 50
runs. In the Cart-Pole problem (Figure 2a), although training is similar, the
average balance time is always slightly longer for NM-SARSA. As no exploration
reduction was used for CACLA on the double Cart-Pole problem exploration was
set to zero once it was able to balance for all subsequent episodes to avoid the
average times being close to zero due to exploratory actions. It can be seen
from both Table 2 and Figure 2b that NM-SARSA trains in considerably fewer
episodes than CACLA on this problem.

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

Episodes

A
v
e
r
a
g
e

B
a
l
a
n
c
e

T
i
m
e

(
s
e
c
o
n
d
s
)

CACLA

NM−SARSA

(a) Cart-Pole task.

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

Episodes

A
v
e
r
a
g
e

B
a
l
a
n
c
e

T
i
m
e

(
s
e
c
o
n
d
s
)

CACLA

NM−SARSA

(b) Double Cart-Pole task.

Fig. 2: Balance time per episode, averaged over 50 runs.

145

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

6 Conclusion

A simple method of action selection for continuous state- and action-space RL
was proposed which utilizes NM to take advantage of the first and second partial
derivatives of Q(s, a) w.r.t. a. The performance of the proposed method was
tested empirically on two difficult continuous-action control benchmark problems
from the literature, where it was shown to train in less episodes than a state-
of-the-art method with less parameters to tune and is able to update without
exploratory actions, reducing the requirement of tuning the exploration schedule.
NM-SARSA also performed well with the addition of noise applied to the selected
action, where it even exceeded the performance of CACLA on the double Cart-
Pole problem. This came at the cost of increased action selection time, which
was still less than 0.002s in these experiments.

Future work seeks to determine the applicability of derivative-free optimi-
sation techniques, e.g. evolutionary algorithms, to solving (1) which would be
applicable even when the derivatives of Q(s, a) are unavailable.

References

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, Massachusetts, 1998.

[2] Juan C. Santamaŕı, Richard S. Sutton, and Ashwin Ram. Experiments with reinforcement
learning in problems with continuous state and action spaces. Adaptive behavior, 6(2):163–
217, 1997.

[3] I. Grondman, L. Busoniu, G. A D Lopes, and R. Babuska. A survey of actor-critic
reinforcement learning: Standard and natural policy gradients. Systems, Man, and Cy-
bernetics, Part C: Applications and Reviews, IEEE Transactions on, 42(6):1291–1307,
2012.

[4] Hado van Hasselt. Reinforcement learning in continuous state and action spaces. In Marco
Wiering and Martijn Otterlo, editors, Reinforcement Learning, volume 12 of Adaptation,
Learning, and Optimization, pages 207–251. Springer Berlin Heidelberg, 2012.

[5] Hado van Hasselt and Marco A. Wiering. Reinforcement learning in continuous action
spaces. In Approximate Dynamic Programming and Reinforcement Learning, 2007. AD-
PRL 2007. IEEE International Symposium on, pages 272–279, April 2007.

[6] Jason Pazis and Michail G. Lagoudakis. Learning continuous-action control policies. In
Adaptive Dynamic Programming and Reinforcement Learning, 2009. ADPRL ’09. IEEE
Symposium on, pages 169–176, April 2009.

[7] Leemon C. Baird and Harry Klopf. Reinforcement learning with high-dimensional, con-
tinuous actions. Technical report, Wright Laboratory, 1993.

[8] Dimitris Dracopoulos, Dimitrios Effraimidis, and Barry D. Nichols. Genetic programming
as a solver to challenging reinforcement learning problems. volume 8 of Horizons in
Computer Science Research, pages 145–174. Nova Publications, Hauppauge, NY, USA,
2013.

[9] M. Riedmiller, J. Peters, and S. Schaal. Evaluation of policy gradient methods and
variants on the cart-pole benchmark. In Approximate Dynamic Programming and Re-
inforcement Learning, 2007. ADPRL 2007. IEEE International Symposium on, pages
254–261, April 2007.

[10] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, August 2000.

[11] Jennie Si and Yu-Tsung Wang. Online learning control by association and reinforcement.
Neural Networks, IEEE Transactions on, 12(2):264–276, March 2001.

146

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.
Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

