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Abstract. By embedding the boolean space Z2 as an orthonormal basis in a vec-
tor space we can treat the RAM based neuron as a matrix (operator) acting on the
vector space. We show how this model (inspired by our research on quantum neu-
ral networks) is of sufficient generality as to have classical weighted (perceptron-
like), classical weightless (RAM-based, PLN, etc), quantum weighted and quantum
weightless neural models as particular cases. It is also indicated how one could use
it to polynomially solve 3-SAT and briefly mention how could one train this novel
model.

1 Introduction

It is well known in Algebra that for any set S and a field F, the function space, i.e. the
set of all functions from S to F, FS , is a vector space with the pointwise sum inherited
from F and pointwise scalar multiplication. There is a bijection between the elements
of S and a basis for FS so we can think of a basis element as actually being an element
of s ∈ S, we denote the vector associated with the element s using the Dirac (or ket)
notation as |s〉 In the special case where an inner product can be defined we get an
inner product spaces and when it induces a metric which is complete, a Hilbert space
is obtained. All that collapses to one notion (vector, inner product or Hilbert space)
when the set S is finite, the case we are mostly concerned with here. For finite sets this
function space is nothing but (isomorphic to) the coordinate vector space F

n, where
n =| S | is the cardinality of S. Linear operators from F

n to F
m are m × n matrices

(representable in an appropriate basis).
This passage from a set S to the vector space FS is a special construction interesting

in itself since it not only takes sets to vector spaces but sends functions f : S → T
to linear operators Af : FS → F

T , making it a functor from the category of sets and
functions to the category of vector spaces and linear operators (over a fixed field). When
restricted to Hilbert spaces and unitary operators, a similar construction has been called
as mathematical quantisation by Nick Weaver [1]. We shall call the general construction
mathematical vectorisation.

The above construction is the inspiration for the proposed weightless neuron model
and was also the inspiration for our previous work on quantum weightless neural net-
works [2, 3, 4, 5, 6]. Besides, this work can be seen as generalization of our previous
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work by removing the requirement of having to stick with unitary operators. We here
allow for any linear and even relaxing to nonlinear operators. It can also been seen as
generalization of the weighted models based on the McCulloch-Pitts neuron as well as
the matrix model such Anderson-Kohonen, BAM, etc.

The weightless neuron era started with the use of n-tuple RAM neuron in pattern
recognition problems about 56 years ago in the work of Bledsoe and Browning [7]. A
few years later, Prof. Igor Aleksander introduced the Stored Logic Adaptive Microcir-
cuit (SLAM) and n-tuple RAM neuron as basic components for an adaptive learning
network [8]. The field has since grown and matured, despite the prejudice and lack of
interest of general researchers in the field of artificial neural networks, with a great deal
of successful applications and novel RAM-based models (see [9, 10] and the references
in there). Amongst those we may cite the probabilistic versions: Probabilistic Logic
Neuron (PLN) [11], Multivalued Probabilistic Logic Neuron (MPLN) [12] and pRAM
[13]. In the PLN neuron it is possible to store 0, 1 and u in the memory positions. The u
value corresponds to the probability of 50% to output 0 or 1. In the MPLN neuron there
are a finite number of finite precision probabilities that can be stored in the memory
position and in the pRAM neuron one can store a finite number of arbitrary precision
probabilities.

As final introductory remark I would like to point out that this paper is on Neuro-
computing Theory. More precisely is on models of Neurocomputing. It is about a way
of looking at and speaking about the subject through the use of a mathematical language
where general results can be obtained in a unified manner. It is about underlying ideas
and concepts. No applications and no learning algorithm are envisaged at the present
work. These practical issues will be dealt with in a follow up to this paper.

2 Linear Algebra in Dirac Notation

For lack of space I must assume the basic notions of fields, vector spaces, basis, span,
tensor and inner and outer products, eingenvalues and eigenvector, etc all of these no-
tions could be easily accessed in classics such as Halmos [14] and Young [15] or modern
approaches such as Weaver’s [1]. We shall only explicit mention the scalar field when
strictly necessary assuming our remarks are true for any field but having the field of
complex numbers C as our default field. In particular our canonical vector space is
Q = C

2 or its tensor product powers,Q⊗n = C
2n .

It is appropriate for our purpose to adopt the Dirac notation for vectors mostly used
by quantum physicists and quantum computer scientists. Usually n-dimensional vec-
tors in Linear Algebra are represented as line vectors, 1 × n, but here we use column
vectors n × 1. In Linear Algebra, we use variables, x, sometimes in boldface, x, or
with overline, x or −→x , but here we use the bra-ket notation where a name of a vector
representing say a state ψ of the system (or space) A is denoted as |ψ〉 or |ψ〉A. The
application of an operator (or matrix) A to a vector ψ is A|ψ〉, which in the case of
matrices is simply the product of the n×nmatrix by the n×1 column matrix. For a n-
dimensional vector space, the canonical basis is here called the computational basis also
called cbits. So, e.g. for the 3-dimensional vector space the computational basis is the
set of three vectors |0〉 = (1, 0, 0)T , |1〉 = (0, 1, 0)T and |2〉 = (0, 0, 1)T . If |ψ〉 ∈ V0
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and |φ〉 ∈ V1, their tensor product is equally denoted as |ψ〉 ⊗ |φ〉, |ψ〉|φ〉 or |ψφ〉. In
analogy with the classical bits, where we we represent say a 3-bit state as say 101, we
also represent a basis 3-qubit state inQ⊗3 as |101〉 but also as |1〉⊗ |0〉⊗ |1〉, |1〉|0〉|1〉.
Notice that n-qubit state lives n 2n-dimensional complex vector space. Recalling that
the conjugate transpose of a matrix (operator) is the transpose of the conjugate of its
entries A† = (A∗)T , a bra is then the conjugate transpose of a ket 〈ψ| = |ψ〉†. With
this notation the inner and outer product of a vector named ψ are respectively 〈ψ||ψ〉
and |ψ〉〈ψ|, respectively a number and a matrix. It is usual and useful to consider basis
which are orthonormal having 〈e i||ej〉 = 1 if, and only if, i = j and zero otherwise.
Our preferred and canonical computational basis is orthonormal and the operator

R =
∑
x∈Z

n
2

|αx〉〈x|

where Z2 = {0, 1}, the field of integers modulus 2, has a very interesting interpretation
which relates it to a a sort of generalised look up table or RAM memory: the action of
R on a basis element |x〉 returns only |αx〉 which can be interpreted as the content of
the memory location addressed by x (or |x〉). This is start point of our general model
below.

3 A Brief Review of RAM-based Weightless Neural Networks

Here we intend to give a most general definition of a RAM and the related RAM-
based neuron. Random Access Memory [16] is an addressable memory device in which
information can be stored and retrieved. It consists of an array of memory cells where
information is stored as m−bits. Each cell location is unique and associated to a unique
number (address) which can be directly accessed and thus named "random access". A
RAM is composed of the memory array, an input register and an output register. Given
an address in the input register, the content of the respective memory cell is returned
in the output register. If the input register is of size n bits, there are 2n addressable
memory cells. The contents of the memory position 0 ≤ k < 2n is denoted here
as C[k] which is itself a m−bits register. Our model allow for a internal activation
function a : Zm

2 → Z
p
2 which transform the internal m-bits number into an output p-

bits number. In case the activation function is the identity function, we have the usual
RAM.

In a first level of abstraction a RAM is just a special kind of function with finite
domain and codomain (or simply a look-up table). The domain are n−bits and the
codomain p−bits, respectively represented as Zn

2 and Z
p
2 and Z

n
2 can be seen as either

a string of bits or the number 0 ≤ k < 2n it represents. But this is not enough. A RAM
has the ability of store and recover data. A table or an array indexed by {0, 1, . . . , 2 n −
1} is a more appropriate level of abstraction but the function notation will be kept.
The actual implementation in terms of boolean circuits or even semiconductor will not
concern us here (see [16]). The pictorial abstract representation of a RAM as a table
in Figure 3 helps the understanding. The input terminals s and d are respectively the
learning strategy and the desired output to be learned but are not considered here once
learning is not an issue at the moment. It is useful to adopt the notation of calling
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the RAM defined above a RAM(n,m,p) or when the activation function is emphasised
RAM(n,m,p,a)

s � 11 . . . 1 C [2n − 1]
d � 11 . . . 0 C [2n − 2]

x1−−−−−−−→
.
.
.

.

.

. a y1−−−−−−−→
.
.
. 00 . . . 1 C[1]

.

.

.
xn−−−−−−−→ 00 . . . 0 C[0] yp−−−−−−−→

Fig. 1: A general RAM Node

Weightless or RAM-based Neural Networks (RbNN) [9] are parallel distributed sys-
tems composed of simple processing units realised as RAM memories, in general the
unit does generalise but networks of RAMs provide the ability to learn from examples
and to generalise. They were introduced by Igor Aleksander in the 1960’s [8] and were
mostly restricted to m = 1 with a being the identity. A very readable introduction is
[17], while [9] is a more complete and updated review.

The building blocks of the our RbNN are the RAM neuron model presented above
and depicted in Figure 1. Following the classical presentation of RbNN a variety of
matrix RbNN can be now be proposed such as WISARD, etc. [9].

The weightless neural networks composed of the Probabilistic Logic Node (PLN)
need some considerations due to the probabilistic nature of the node. The same Figure 1
can be used to pictorially represent a PLN node. The difference is just that now a 2-bit
number is stored at the addressed memory location (m = 2). The bitstrings 00, 11 and
01 (or 10) respectively represents 0, 1 and u. Additionally, one must have a probabilistic
output generator. The activation function of the PLN Node returns y, if C[x] = y, for
y ∈ {0, 1} and uniformly random 0 or 1 if C[x] = u.

The Multi-Valued Probabilistic Logic Node (MPLN) differs from PLN by allowing
a wider but still discrete range of probabilities to be stored at each memory content.
A m-bit valued MPLN node can store a value k in the range {0, ..., 2m − 1} which is
interpreted as the firing probability p = k

2m−1 of the node output 1.
The pRAM [13] is also an extension of the PLN like the MPLN, but in which

continuous probabilities can be stored, that is, value in the range [0, 1], with infinite
precision, m =∞. The usual activation function employed is ŷ = 1

T

∑T
t=1 r(t).

4 Vector Space Weightless Neural Networks

The definition of RAM neuron in the last section is quite general and, we conjecture,
covers most if not all weightless model which takes binary inputs. Some others mod-
els such GSN [18] and a variation of the pRAM, the i-pRAM [19] allow for non bi-
nary inputs as well the quantum model in [3]. The weighted models, mostly using the
McCulloch-Pitts neuron, use non binary real valued inputs. The definition which fol-
lows aims at to be so general as to cover all these cases as well as the models in the
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previous section. The ultimate general weightless neuron acts over a vector (or Hilbert)
space. A Vector Space Neuron (VSN) is the mathematical vectorisation of the RAM
neuron. In this way, binaries inputs are converted to cbits and the action of recovering
the stored valued is performed by theR operator above which can be further generalised
to take the activation function into account:

R =
∑
x∈Z

n
2

A|αx〉〈x|

whereA is p×mmatrix (operator) to stay in tune with our general RAM(n,m,p) neuron.
If a general state, not necessarily a cbit but a general qubit, say |ψ〉 = ∑

x∈S⊆Z
n
2
cx|x〉,

cx ∈ F are scalars, is given as input, all “cells” with address in S will be recovered.
Reader familiar with the GSN model will recognise this. A VSN with just one entry in
a linear combination

∑
i<n xi|i〉 and having as activation F ◦∑i<n wi|i〉〈i|, outputs

the action of F on weighted sum of the inputs x i thus simulating a McCulloch-Pitts
Neuron, if F is one of the nonlinear sigmoid functions usually employed. For multiple
inputs to a VSN we take their tensor product. This gives a higher order interaction if
the inputs are each linear combinations of the weighted neuron being simulated.

5 A few remarks on polynomially solving 3-SAT

Any boolean function is computed by a RAM neuron and consequently by our VSN.
SAT is the problem of determining weather a conjunction of disjunctions of literals (a
boolean variable or its negation) is true for assignment of truth values to the variables
involved i.e if a boolean function of the variables ever return 1. 3-SAT limits the number
of literals in a disjunction (clause) to three. Thus a RAM-based WNN with two layers
in which the first layer has k three input neurons, where k is the number of clauses,
and the second layer has one k-input neuron performing the conjunction, evaluates a
3-SAT instance. A VSN, using superposition (linear combination) evaluates in one step
ALL instances of a given 3-SAT formulae. By using the tensor powers of the operator
O = 2n|1〉〈1| as activation function in the neuron in the second layer we are able to
solve 3-SAT in polynomial steps. It has to be said that the space required (size of the
vectors and matrices) of an actual (classical) implementation are exponential on the
number of variables.

6 Conclusions and further work

We have given the firsts steps towards what may become an interesting generalization
of neural networks where various weightless and weighted models are special cases. A
natural follow up is to catalogue what is in the literature, if that is possible and make
improvements or further generalisations where is not. Generalise learning algorithms
in order to apply to a different class of models sounds promising - this has already been
done for the special case of MPLN [12, 20]. A promising future works is to investigate
the use of nonlinearity allowed in our model and the know computing power which
it brings into play [21, 22, 23]. Relations with geometry of information retrieval [24]
must be investigated with a view to applications.
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